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-nergetic coherence as a resource

Energetic coherence
= superposition between eigenstates of the Hamiltonian with different eigenvalues.

This resource is mandatory for

« Creating accurate clocks
« Accelerating quantum operations
« Measuring physical quantities that do not commute with the Hamiltonian

The resource theory of asymmetry (RTA) is a branch of resource theories that investigates the
sequence of the symmetry of the dynamics and conservation laws.



Resource manipulation in RTA

In any resource theory, resource manipulation (= dilution and distillation) is an essential.

Several important results are known in RTA. For example,

« Exact convertibility among pure states [G. Gourand R. W. Spekkens (2008), I. Marvian PhD thesis (2012)]

« Asymptotic conversion theory for i.i.d. states ¢p®™ — @™ [I. Marvian (2022)]

However, resource conversion in the non-i.i.d. regime has not been established in RTA.



Non-i.i.d. theories in entanglement theory

Non-i.i.d. theories are established e.g., in the resource theory of entanglement.

This is established with the information-spectrum method.

The information-spectrum method is a powerful tool to analyze the non-i.i.d. regime for
problems related to entropy.

Ent. cost: E..s =(the minimal rate of Bell states required to crate a sequence of states)

Dist. ent.: Egi = (the maximal rate of Bell states extractable from a sequence of states)

For any sequence of pure states 1), they are given by the spectral sup- and inf-entropy rates S, S

Ecost(l/;) — g(ﬁ) Edist({p\) = §(,5)

[G. Bowen and N. Datta (2008)] [M. Hayashi (2003)]



Non-i.i.d. theory for RTA?

So far, it has not been possible to apply the information-spectrum method to RTA.

This is because a standard measure of energetic coherence in RTA is
the quantum Fisher information (QFI), which is quite different from entropy.

We here propose an information-spectrum approach for QFI to establish non-i.i.d. theory in RTA.



Main achievements

[KY and Hiroyasu Tajima, arXiv:2204.08439]

Main achievements are three:

1. We introduce new quantities, termed the spectral sup- and inf-QF]| rates

[They are the counterparts of the spectral entropy rates.]

2. To construct the spectral sup- and inf-QFI rates through the smoothing
method, we define the max- and min-QFl

[They are the counterparts of max- and min-entropies]

3. To show the properties of the max- and min-QFI, we introduce the notion of
asymmetric majorization for probability distributions. We show that the exact
convertibility between pure states in RTA is expressed by an asymmetric majorization

relation. [This is the counterpart of Nielsen’s theorem]



Outline of this talk

Introduction
Resource theory of asymmetry
The spectral QFI rates
Main theorem:
« the coherence cost, the distillable coherence and the spectral QFI rates

Intuitive explanation of the main theorem



The resource theory of asymmetry (RTA)

In RTA, we consider a quantum system with a Hamiltonian H.

Free operation = covariant operation

£ is called covariant iff it commutes with the time-translation, i.e.,
8(e_thpeIHt) — e‘thE(p)eth

Free state = symmetric state = state w/o energetic coherence*  * Energetic coherence:

: oo superposition between energy
p is called symmetric iff [p, H] = 0 eigenstates w/ different energies

Resource state = asymmetric state = state w/ energetic coherence
p is called asymmetric iff [p, H] # 0



OFI as a standard measure

A resource measure R satisfies 1. R(p) = R(E(p)) for any free operation &
2. R(p) =0 for any free state p

A crucial resource measure in RTA is the symmetric logarithmic derivative quantum Fisher
information w.r.t. p, = {e‘thpeth} , given by

Eigenvalue decomposition:

F(p) _zz( |(l|H|J)|2 p:Z/lili)(iI

Conventionally, this quantity is called the Quantum Fisher information (QFI).



Hamiltonian for harmonic oscillators

0.0)
From now on, we assume that the Hamiltonian is given by H = n [n)(n|
the harmonic oscillator Hamiltonian for simplicity. o

n=0

Conversion theory for harmonic oscillators in pure states can be generalized to

any systems in periodic pure states with an arbitrary Hamiltonian.
[I. Marvian, arXiv:2112.04694]

[KY and Hiroyasu Tajima, arXiv:2204.08439]



Asymptotic convertibility

We adopt the trace distance D(p, o) = %Ilp — o||{ as a quantifier of error.

We say that a sequence p = {p,,},, IS convertible to another sequence & = {a,,},, by cov. ops. iff

3 covariant operatlons {Em}m S-t. lim D(8m(pm) om) = 0.
(60) m-

In this case, we denote p > 6.

We introduce two key quantities: the coherence cost and the distillable coherence

Ceost (D) = inf{Rl @(R) C;V ﬁ} Caist(P) = sup {Rl p Cgv d)coh(R)}
Coherence bit: peon) = 75 (10) +11))  deon = pcon)Peonl. Peon(®) = {dgon " |

In the i.i.d. regime, Ceost(P) = Caist(¥) = F (@) holds for p = {y®™} with a pure state 3 with period 2.
[I. Marvian (2022)]



Notations

Energy distribution:
For a given pure state i, we denote py(n) = [(n|y)|*.

Product (convolution) *:
For two sequences of numbers a = {a(n)},, and b = {b(n)},,, we define their product a = b by

a*b(n) = 2 a(k)b(n — k)

- KEZ
Inverse sequence g:

For a given sequence q, we say another sequence § is its inverse when it satisfies
g*qn)=bon-

If there exists n, = min{n|q(n) > 0}, then the unique g can be explicitly constructed by a
recursive formula.

The inverse sequence for energy distributions is essential to construct the spectral QFI rates.



(seneralized Poisson distribution

Generalized Poisson distribution:

AAn (n > 0)

For 2 € R, we define Py = {P,(n)} by Pa(n) = {e_ n!
0

ForA >0, itis an ordinary Poisson distribution.
For 2 < 0, it is not a probability distribution. Nevertheless, it plays an important role since P; = P_;



The max- and min-QF|

We introduce two key quantities for a pure state :
Tmax(lp) = inf {4‘A|PA * ﬁ{b = 0} Tmin(lp) = sup {4ﬂ.|p¢ *P_) = 0}

The max- and min-QFI are the amounts of energetic coherence in ¥ that can be
transformed from and to a pure state whose energy distribution is given by the Poisson
distribution.

The max-QFl is also defined for a general state p by Finax(p) = _inf Fmax(P))
p11A

(CIDP: purification of p, H,: the Hamiltonian of ancilla w/ integer eigenvalues)

The max- and min-QFls have similar properties to the max- and min-entropies. For example,

Tmax(lp) = T(l/)) = Tmin(l/))

[KY and Hiroyasu Tajima, arXiv:2204.08439]



The spectral QFI rates

We define the spectral sup-and inf-QFI rates by

— 1 -~ 1
F () = lim limsup — Ffay (Ym) F($) := lim liminf—Fy, (Pm)

m—oo e—»0 m-oco Mm

where the smooth max- and min-QFls are defined by

€ — € — .
Tmax(l/)) T peg}g{lp)?‘max(p) Tmln (lp) pEBSSI:E(‘L/))Tmln (p)

B¢(p) = {states p|D(p,0) < €} Bfure(p) = {pure states ¢|D(p, ) < €}
[KY and Hiroyasu Tajima, arXiv:2204.08439]

Cf. The spectral entropy rates w/ smoothing method:

_ o 1 1
S(p) = ng?) llnr?jgop— Sthax Wm) S(p) = ligrg lgrrgiorgf — Stnin Wm)
. € .—
Smax(¥) = pe}?r}f(‘w)smax(p) Smin () = pESBuEI()w)Smin(P) [N. Datta and R. Renner (2009)]

[R. Renner, PhD thesis (2005)]



Main theorem

[ I\/laiﬂ fesu |t [KY and Hiroyasu Tajima, arXiv:2204.08439]

7 N N

~—

For any sequence of pure states ¥ = {{,,,}n,
Ccost(l];) = 7_:(1/3) CdiSt(lz;) = Z(l/;)
1 1
The spectral QFI rates are defined by fF(l/)) = lln(l) limsup — Trﬁax (Yim), fF(l/)) = lln(l) l%rlnmfm?&in(lpm)
m—oo - —00

[In entanglement theory}

For any sequence of pure states ¥ = {,, ). \
Ecost(lp) = S(ﬁ) Edist(lp\) = §(ﬁ) (,5 ={pm} pm =Trp (wAB,m))

[M. Hayashi (2003), G. Bowen and N. Datta (2008)]

1 1
The spectral entropy rates are given by  S(p) = llm limsup —Stax (Pm), S(P) = hm liminf—S¢ i, (om)
\ -0 moco M -0 m-oo m

[N. Datta and R. Renner (2009)V
2022/09/30 Beyond IID in RTA: An Information-Spectrum Approach for QF| 16




Rewriting Ceost (1) W/ Poisson distr.

« The energy distr. of qbfg{fm] converges to a Poisson distr. Pgy, /4 Up to a shift asm — oo

« The energy can be shifted by covariant operations

—> {gbf?)LRm]}m and {XRm/4}m are asymptotically interconvertible, where |y;) = ¥, +/P,(n)|n)

Ceost($) = inf{R| Bon(R) > $} = inf{R| Icov. ops. {En}m 5.t lim D (&m (6S™), 9o ) = 0}

= inf{4A| dcov.ops. {E,,}m S- L. nllmgo D& (Xma), Yim) = 0}

Target: inf{41| 3cov.op.Es.t. E(xy) = p } for p € BE(Y) X2

We will show Fy.x(p) = inf{4A| Icov.op.Es.t. E~(xy) =p}

2022/09/30 Beyond IID in RTA: An Information-Spectrum Approach for QF| 17



a-majorization
We here introduce a notion of asymmetric-majorization (a-majorization).

For given two probability distributions p = {p(n)},, and g = {g(n)},,, we say that p a-majorizes q iff

p*xgdn)=0forallneZ
In this case, we denote p >, q.

A key result:

A pure state vy is convertible to ¢ by a covariant operation w/o error iff Py *a P¢
[KY and Hiroyasu Tajima, arXiv:2204.08439]

[Other forms of NS condition for the exact conversion can be found e.g., in G. Gour and R. W. Spekkens (2008)]

(cf.) Nielsen’s theorem in entanglement theory:
A pure state i is convertible to ¢ by a LOCC w/o error iff Ay < Ag

Ay: the prob. distr. defined by the Schmidt coefficients of a bipartite pure state Y



max-QF | Tor pure states

The max-QFI for pure state ¥ is defined by

Fmax(W) = inf {42|P; x py, = 0} (a-majorization)
= inf{4A|3cov.op.E s.t. E(xy) = Y}
This is exactly what we need for calculating the coherence cost.

Since the QFI for [x3) = X +/Pa(n)|n) is given by F(x;) = 44, we can also rewrite

Fnax@) = inf{F (x,)|3cov.op.E s.t. E(xy) = Y}

Frax = The minimal amount of energetic coherence (i.e., QFI) in |x;) that is required to create |y).

Fmin = The maximum amount of energetic coherence in |x;) that can be extracted from |y).



max-QF!| for mixed states

Fnax(p) = CI)inIfIA TmaX(CDP)
Let @, denote a purification of a general state p. g

If 3 cov. op. € s.t. E(x1) = P, then p can be created from y; since trg o E(x3) = p
— cI)inlg Fnax (Pp) = inf{41|3cov.op.Es.t.E(xy) = p}
pttA

If 3 cov. op. & s.t. E'(xa) = p, then 3 a purification &, that can be created from y;.

cov. Stinespring dilation: For any covariant operation &', 3 an ancilla A with Hamiltonian H,, its eigenstate |ny,)
and an energy-preserving (covariant) unitary Us, s.t. E'() = TTA(USA('" R |77A)<UADU5-‘I-A)
— (Dmf Fnax (CIDP) < inf{44|3cov.op.E s.t. E(xy) = p}
p’

Therefore, Fpax(p) = inf{4A|3cov.op.E s.t. E(x,) = p}

Since Ceost(P) = inf{4/1| Jcov.ops. {En}m S t. lim D& (Xm) ¥m) = O}, we get

1
cost(l/)) T(l/)) = hm hrrrrlljgp Fhax (l/)m) where Frax(P) = Eg}{lp)fmax(p)



See [KY and Hiroyasu Tajima, arXiv:2204.08439] for further details.

Summary

We established asymptotic conversion theory between pure states in the non-i.i.d. regime by
constructing the spectral sup- and inf-QFI rates.

~ — — 1
Ccost(l/)) = T(l/)) :F(l/)) := lim limsup — Frax (Wm)

€0 mos0 M

Case(®) =F@F)  F(P) = lim liminf— FE, ()

e—>0 m—-oo Mm

To construct the spectral sup- and inf-QFI rates through the smoothing method, we define
the max- and min-QF/.

Asymmetric majorization relation gives a necessary and sufficient condition for exact
convertibility among pure states, which is the counterpart in RTA to Nielsen’s theorem.



