RESOURCE ENGINES

Quantum resources: from mathematical foundations to operational characterisation

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Gliwice, Poland

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland

From Heat Engines to Resource Engines

Thermodynamic inspirations:

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

∃ ⊳

From Heat Engines to Resource Engines

Thermodynamic inspirations:

 \rightarrow

• Access to a single heat bath

Access to a single set of constrained free operations.

From Heat Engines to Resource Engines

Thermodynamic inspirations:

 \rightarrow

• Access to a single heat bath

Access to a single set of constrained free operations.

• Access to 2 heat baths (*heat engines*) – the system is **subsequently** connected to the hot and cold bath.

From Heat Engines to Resource Engines

Thermodynamic inspirations:

 \rightarrow

 \rightarrow

• Access to a single heat bath

Access to a single set of constrained free operations.

• Access to 2 heat baths (*heat engines*) – the system is **subsequently** connected to the hot and cold bath.

Access to 2 sets of constrained free operations (*resource engines*) – The system is sent to Alice and Bob in turns and can be transformed by them.

From Heat Engines to Resource Engines

Thermodynamic inspirations:

• Access to a single heat bath

Access to a single set of constrained free operations.

• Access to 2 heat baths (*heat engines*) – the system is **subsequently** connected to the hot and cold bath.

Access to 2 sets of constrained free operations (*resource engines*) – The system is sent to Alice and Bob in turns and can be transformed by them.

Motivation:

 \rightarrow

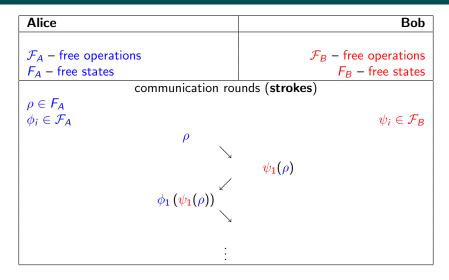
 \rightarrow

• Resource engines – provide a natural way of fusing various resource theories (in the spirit of multi-resource theories).

ヘロト 人間ト 人団ト 人団トー

[C. Sparaciari, L. Del Rio, C. M. Scandolo, P. Faist, and J. Oppenheim, **Quantum** 4, 259, **2020**.]

From Heat Engines to Resource Engines



Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

Research Questions

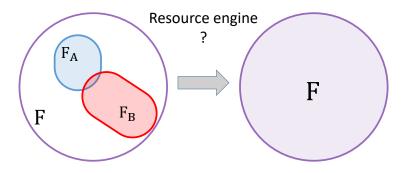
Can we achieve all possible final states starting from free states?

글 🕨 🖂 글

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

Research Questions

Can we achieve all possible final states starting from free states?

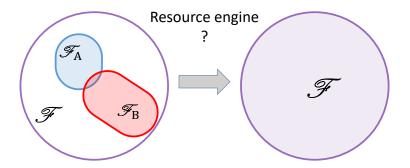


Research Questions

Can a resource engine defined by 2 constraints generate a full set of quantum operations?

Research Questions

Can a resource engine defined by 2 constraints generate a full set of quantum operations?



Research Questions

Can we bound the number of strokes needed to obtain the above, and thus study the equivalents of engine's power and efficiency?

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

Exemplary Models of Resource Engines

1. Coherence engines.	2. Fixed point constraints.		
Agents constrained to performing unitaries diagonal in 2 different bases.	Thermodynamic scenario with access to hot and cold baths, but with agents not allowed to use any ancillary systems.		
for simplicity: theory restricted to pure states	for simplicity: theory restricted to incoherent states		
<u>related to</u> : the problem of controllability by 2 different incommensurable Hamiltonians			

ヨト・モート

< □ > < 同 >

æ

Coherence Engines

ヘロト 人間 ト 人 田 ト 人 田 トー

Ξ.

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

Notation and Assumptions

- $U_n(\mathbb{C})$ a group of unitary matrices of order $n \ge 2$ over \mathbb{C} .
- $\mathcal{DU}_n(\mathbb{C})$ a subgroup of $\mathcal{U}_n(\mathbb{C})$ consisting of diagonal matrices.

< 4 P ►

B N 4 B N

Notation and Assumptions

- $U_n(\mathbb{C})$ a group of unitary matrices of order $n \ge 2$ over \mathbb{C} .
- $\mathcal{DU}_n(\mathbb{C})$ a subgroup of $\mathcal{U}_n(\mathbb{C})$ consisting of diagonal matrices.
- Sets of free operations:

 $\mathcal{F}_A = \mathcal{DU}_n(\mathbb{C})$ and

 $\mathcal{F}_{B} = \{ U^{\dagger} DU : D \in \mathcal{DU}_{n}(\mathbb{C}) \} \text{ with an arbitrarily fixed } U \in \mathcal{U}_{n}(\mathbb{C}).$

Notation and Assumptions

- $U_n(\mathbb{C})$ a group of unitary matrices of order $n \ge 2$ over \mathbb{C} .
- $\mathcal{DU}_n(\mathbb{C})$ a subgroup of $\mathcal{U}_n(\mathbb{C})$ consisting of diagonal matrices.
- Sets of free operations:

 $\mathcal{F}_{\mathcal{A}} = \mathcal{D}\mathcal{U}_n(\mathbb{C})$ and

 $\mathcal{F}_B = \{ U^{\dagger} D U : D \in \mathcal{DU}_n(\mathbb{C}) \} \text{ with an arbitrarily fixed } U \in \mathcal{U}_n(\mathbb{C}).$

- Exemplary sets of free states:
 - F_A the set of all pure basis states $\{|i\rangle\}_{i=1}^n$ and
 - F_B the set of all pure rotated basis states $\{U^{\dagger}|i\rangle\}_{i=1}^{n}$.

Notation and Assumptions

- $U_n(\mathbb{C})$ a group of unitary matrices of order $n \ge 2$ over \mathbb{C} .
- $\mathcal{DU}_n(\mathbb{C})$ a subgroup of $\mathcal{U}_n(\mathbb{C})$ consisting of diagonal matrices.
- Sets of free operations:

 $\mathcal{F}_{A}=\mathcal{D}\mathcal{U}_{n}(\mathbb{C})$ and

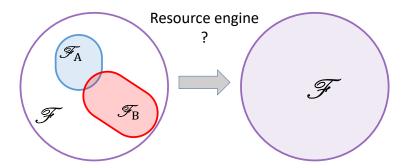
 $\mathcal{F}_B = \{ U^{\dagger} D U : D \in \mathcal{DU}_n(\mathbb{C}) \} \text{ with an arbitrarily fixed } U \in \mathcal{U}_n(\mathbb{C}).$

- Exemplary sets of free states:
 - F_A the set of all pure basis states $\{|i\rangle\}_{i=1}^n$ and
 - F_B the set of all pure rotated basis states $\{U^{\dagger}|i\rangle\}_{i=1}^{n}$.

• For
$$U \in \mathcal{U}_n(\mathbb{C})$$
, define $P_U = (p_{ij})_{i,j=1}^n$ by

$$p_{ij} = \left\{ egin{array}{cc} 0 & ext{for} \; u_{ij} = 0 \ 1 & ext{for} \; u_{ij}
eq 0 \end{array}
ight. .$$

Condition on Generating All Operations



・ロト ・ 一下・ ・ ヨト

E

Condition on Generating All Operations

(H1) There exist a constant $N \in \mathbb{N}$ and matrices $D_1, \ldots, D_{2N} \in \mathcal{DU}_n(\mathbb{C})$ such that

 $D_1\left(U^{\dagger}D_2U\right)D_3\left(U^{\dagger}D_4U\right)\dots D_{2N-1}\left(U^{\dagger}D_{2N}U\right)$

- ₹ ► ►

1

is a matrix with all non-zero entries.

Condition on Generating All Operations

(H1) There exist a constant $N \in \mathbb{N}$ and matrices $D_1, \ldots, D_{2N} \in \mathcal{DU}_n(\mathbb{C})$ such that

 $D_1\left(U^{\dagger}D_2U\right)D_3\left(U^{\dagger}D_4U\right)\dots D_{2N-1}\left(U^{\dagger}D_{2N}U\right)$

is a matrix with all non-zero entries. (H2) There exists a constant $N \in \mathbb{N}$ such that

 $\left(P_{U}^{T}P_{U}\right)^{N}$

is a matrix with all non-zero entries.

Condition on Generating All Operations

(H1) There exist a constant $N \in \mathbb{N}$ and matrices $D_1, \ldots, D_{2N} \in \mathcal{DU}_n(\mathbb{C})$ such that

 $D_1\left(U^{\dagger}D_2U\right)D_3\left(U^{\dagger}D_4U\right)\dots D_{2N-1}\left(U^{\dagger}D_{2N}U\right)$

is a matrix with all non-zero entries. (H2) There exists a constant $N \in \mathbb{N}$ such that

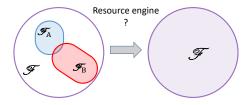
 $\left(P_{U}^{T}P_{U}\right)^{N}$

is a matrix with all non-zero entries.

Lemma

Hypothesis (H2) and (H1) are equivalent.

Condition on Generating All Operations



- ∢ ≣ ▶

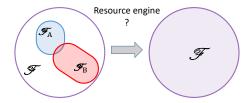
E >

< □ > < 同 >

E

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

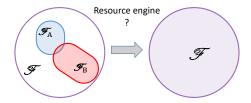
Condition on Generating All Operations



Theorem

IF U (appearing in the definition of \mathcal{F}_B) satisfies either (H1) or (H2), THEN any unitary matrix can be written as a product comprised of N matrices from \mathcal{F}_A and N matrices from \mathcal{F}_B .

Condition on Generating All Operations



Theorem

IF U (appearing in the definition of \mathcal{F}_B) satisfies either (H1) or (H2), THEN any unitary matrix can be written as a product comprised of N matrices from \mathcal{F}_A and N matrices from \mathcal{F}_B .

[Z. Borevich and S. Krupetskij, J. Sov. Math. 17, 1718 (1981)]

Examples

Example (negative)

There exist unitary matrices which do not satisfy condition (H2), e.g.

$$\left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right]$$

.

< □ > < 同 >

æ

< ∃ >

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

Link to the Theory of Markov Chains

Theorem

Let X be an **irreducible** and **aperiodic Markov chain** with finite state space and transition matrix Π . THEN there **exists a finite constant** M such that for all $m \ge M$

 $\Pi_{ij}(m) > 0$ for all states $i, j \in \Sigma$,

meaning that $\Pi(m)$ is a matrix with all non-zero entries, and so any two states are communicating.

$$\Pi(0)=\mathbb{1}, \ \ \Pi(1)=\mathcal{P}, \ \ \Pi_{ij}(m)=\sum_{k\in E}\Pi_{ik}\Pi_{kj}(m-1) \ \ ext{for} \ \ m\in\mathbb{N}$$

Examples

Example (positive)

A transition matrix of some irreducible and aperiodic finite Markov chain:

Π =	Γ 0	0	0.1	0.1	0.7	0.1	l
	0.2	0.3	0.4	0.1	0	0	
	0.1	0.9	0	0	0	0	
	0.2	0.2	0.3	0.3	0	0	
	0	0	0	0	0.5	0.5	
	LΟ	0	0.4	0.3	0.1	0.2	

イロト イボト イヨト イヨト

E

Examples

Example (positive)

A transition matrix of some irreducible and aperiodic finite Markov chain:

$$\Pi = \begin{bmatrix} 0 & 0 & 0.1 & 0.1 & 0.7 & 0.1 \\ 0.2 & 0.3 & 0.4 & 0.1 & 0 & 0 \\ 0.1 & 0.9 & 0 & 0 & 0 & 0 \\ 0.2 & 0.2 & 0.3 & 0.3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.4 & 0.3 & 0.1 & 0.2 \end{bmatrix}$$

The corresponding unitary matrix (with the same pattern of zero/ non-zero elements):

$$U = \begin{bmatrix} 0 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- ∢ ≣ ▶

< 4 P ►

э

Bounding the Number of Strokes

医下 不良下

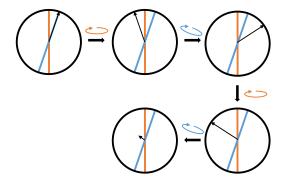
E

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

Bounding the Number of Strokes - INTUITIONS

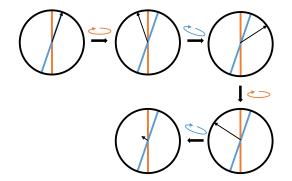
A single-qubit system with:

- F_1 , F_2 states diagonal in the σ_z and $\cos \alpha \sigma_z + \sin \alpha \sigma_x$ eigenbases
- \mathcal{F}_1 , \mathcal{F}_2 unitary rotations around the appropriate axes



Bounding the Number of Strokes - INTUITIONS

- $\alpha = \pi/2$: just one operation is needed.
- α < π/2: [π/(2α)] operations (done subsequently by Alice and Bob) are needed.



Bounding the Number of Strokes Needed to Generate All Operations (QUBIT CASE)

As a corollary of the result established in: [M. Hamada, Royal Society Open Science 1 (2014)], we obtain:

Bounding the Number of Strokes Needed to Generate All Operations (QUBIT CASE)

As a corollary of the result established in:

[M. Hamada, Royal Society Open Science 1 (2014)], we obtain:

Theorem (qubit case)

Alice and Bob,

restricted to apply operations from \mathcal{F}_A and \mathcal{F}_B , consisting of rotations about three-dimensional real unit vectors \hat{m} and \hat{n} (rotated with respect to each other by α),

can generate any unitary matrix **with the** minimal number of alternated rotations about vectors \hat{m} and \hat{n} equal to

$$\left\lceil \frac{\pi}{\alpha} \right\rceil + 1$$

Bounding the Number of Strokes Needed to Generate All Operations – THE LOWER BOUND

Theorem

The number 2N of operations that Alice and Bob need to perform (N by Alice, and N Bob) in order to generate an arbitrary unitary matrix of order n is bounded from below by

$$rac{\log{(n-1)}}{\log{((n-2)c_U+1)}}$$
 for $n\in\mathbb{N}ackslash\{1,2\}$ and $rac{1}{c_U}$ for $n=2,$

イロト イポト イヨト

Э

Bounding the Number of Strokes Needed to Generate All Operations – THE LOWER BOUND

Theorem

The number 2N of operations that Alice and Bob need to perform (N by Alice, and N Bob) in order to generate an arbitrary unitary matrix of order n is bounded from below by

$$rac{\log{(n-1)}}{\log{((n-2)c_U+1)}}$$
 for $n \in \mathbb{N} \setminus \{1,2\}$ and $rac{1}{c_U}$ for $n=2,$

where

$$c_U := \max_{a,b \in \{1,...,n\}: a \neq b} \sum_{j=1}^n |u_{j,a}| |u_{j,b}|$$

イロト イポト イヨト イヨト

Э

Theorem

The number 2N of operations that Alice and Bob need to perform (N by Alice, and N Bob) in order to generate an arbitrary unitary matrix of order n is bounded from below by

$$rac{\log{(n-1)}}{\log{((n-2)c_U+1)}}$$
 for $n\in\mathbb{N}ackslash\{1,2\}$ and $rac{1}{c_U}$ for $n=2,$

where

$$c_U := \max_{a,b \in \{1,...,n\}: a \neq b} \sum_{j=1}^n |u_{j,a}| |u_{j,b}|$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・

(equivalently, $c_U = \max_{a,b \in \{1,\ldots,n\}: a \neq b} \langle a | (X_U^T X_U) | b \rangle$ with $x_{i,j} = |u_{i,j}|$ for all $i, j \in \{1,\ldots,n\}$).

Bounding the Number of Strokes Needed to Generate All Operations – THE UPPER BOUND

[M. Huhtanen and A. Perämäki, J. Fourier Anal. Appl. (2015)]

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

[M. Huhtanen and A. Perämäki, J. Fourier Anal. Appl. (2015)]

A generic matrix $A \in \mathbb{C}^{n \times n}$ is shown to be the **product of circulant and diagonal** matrices with the number of factors being 2n - 1 at most.

[M. Huhtanen and A. Perämäki, J. Fourier Anal. Appl. (2015)]

A generic matrix $A \in \mathbb{C}^{n \times n}$ is shown to be the **product of circulant and diagonal** matrices with the number of factors being 2n - 1 at most.

 $U=D_1C_1\ldots D_{n-1}C_{n-1}D_n$

2n-1 factors

[M. Huhtanen and A. Perämäki, J. Fourier Anal. Appl. (2015)]

A generic matrix $A \in \mathbb{C}^{n \times n}$ is shown to be the **product of circulant and diagonal** matrices with the number of factors being 2n - 1 at most.

 $U=D_1C_1\ldots D_{n-1}C_{n-1}D_n$

2n-1 factors

Every circulant matrix can be written as a product of a Fourier transform, a diagonal matrix, and an inverse Fourier transform.

[M. Huhtanen and A. Perämäki, J. Fourier Anal. Appl. (2015)]

A generic matrix $A \in \mathbb{C}^{n \times n}$ is shown to be the **product of circulant and diagonal** matrices with the number of factors being 2n - 1 at most.

$$U = D_1 C_1 \dots D_{n-1} C_{n-1} D_n \qquad \qquad 2n-1 \text{ factors}$$

Every circulant matrix can be written as a product of a Fourier transform, a diagonal matrix, and an inverse Fourier transform.

$$U = D_1 (FD_{C_1}F^{-1}) \dots D_{n-1} (FD_{C_{n-1}}F^{-1}) D_n$$

 $n + (n-1)(2\mathbf{M} + 1)$ factors

4 E 6 4 E 6

[M. Huhtanen and A. Perämäki, J. Fourier Anal. Appl. (2015)]

A generic matrix $A \in \mathbb{C}^{n \times n}$ is shown to be the **product of circulant and diagonal** matrices with the number of factors being 2n - 1 at most.

$$U = D_1 C_1 \dots D_{n-1} C_{n-1} D_n \qquad \qquad 2n-1 \text{ factors}$$

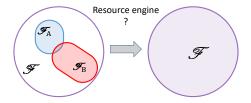
Every circulant matrix can be written as a product of a Fourier transform, a diagonal matrix, and an inverse Fourier transform.

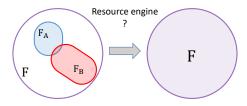
$$U = D_1 (FD_{C_1}F^{-1}) \dots D_{n-1} (FD_{C_{n-1}}F^{-1}) D_n$$

 $n + (n-1)(2\mathbf{M} + 1)$ factors

M - number of operations needed to generate a Fourier matrix (open)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □





◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Condition on Getting the Optimal State

三下 人王下

æ

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

Condition on Getting the Optimal State

For any two bases $\{|a_i\rangle\}_{i=1}^n$ and $\{|b_i\rangle\}_{i=1}^n$ of an *n*-dimensional Hilbert space there exist at least 2^{n-1} states $|\psi_*\rangle$ unbiased in both these bases

 $|\psi_*
angle$ – a mutually coherent (or maximally mutually coherent) state.

Condition on Getting the Optimal State

For any two bases $\{|a_i\rangle\}_{i=1}^n$ and $\{|b_i\rangle\}_{i=1}^n$ of an *n*-dimensional Hilbert space there exist at least 2^{n-1} states $|\psi_*\rangle$ unbiased in both these bases

$$|\langle a_i | \psi_* \rangle| = |\langle b_i | \psi_* \rangle| = \frac{1}{\sqrt{n}}$$
 for all $i \in \{1, \dots, n\}$.

 $|\psi_*\rangle$ – a mutually coherent (or maximally mutually coherent) state.

[M. Idel, M.M. Wolf, Linear Algebra Its Appl. 471, 76–84 (2015)]
 [K. Korzekwa, D. Jennings, and T. Rudolph, Phys. Rev. A 89, 052108 (2014)]

Condition on Getting the Optimal State – Within a Single Stroke (QUBIT CASE)

Theorem

Let $U \in \mathcal{U}_2(\mathbb{C})$ be such that

$$U = e^{i\phi} \begin{bmatrix} e^{i\varphi_0}\cos(\varphi) & -e^{-i\varphi_1}\sin(\varphi) \\ e^{i\varphi_1}\sin(\varphi) & e^{-i\varphi_0}\cos(\varphi) \end{bmatrix}$$

with $\varphi \in [\pi/8, 3\pi/8]$.

THEN Alice and Bob can produce a mutually coherent state after performing only two operations

Condition on Getting the Optimal State – Within a Single Stroke (QUBIT CASE)

Theorem

Let $U \in \mathcal{U}_2(\mathbb{C})$ be such that

$$U = e^{i\phi} \left[egin{array}{cc} e^{iarphi_0}\cos(arphi) & -e^{-iarphi_1}\sin(arphi) \ e^{iarphi_1}\sin(arphi) & e^{-iarphi_0}\cos(arphi) \end{array}
ight]$$

with $\varphi \in [\pi/8, 3\pi/8]$.

THEN Alice and Bob can produce a mutually coherent state after performing only two operations

The necessary cond. for n = 2: $\pi/8 \le \varphi \le 3\pi/8$ – follows from the triangle inequalities.

Condition on Getting the Optimal State – Within a Single Stroke (QUBIT CASE)

Theorem

Let $U \in \mathcal{U}_2(\mathbb{C})$ be such that

$$U = e^{i\phi} \left[egin{array}{cc} e^{iarphi_0}\cos(arphi) & -e^{-iarphi_1}\sin(arphi) \ e^{iarphi_1}\sin(arphi) & e^{-iarphi_0}\cos(arphi) \end{array}
ight]$$

with $\varphi \in [\pi/8, 3\pi/8]$.

THEN Alice and Bob can produce a mutually coherent state after performing only two operations

The necessary cond. for n = 2: $\pi/8 \le \varphi \le 3\pi/8$ – follows from the triangle inequalities.

For bigger n it follows form generalized polygon inequalities.

Condition on Getting the Optimal State

Theorem

Let $U \in U_n(\mathbb{C})$. The necessary condition for the existance of $D \in \mathcal{D}U_n(\mathbb{C})$ such that $U^{\dagger}DU$ has a flat column:

$$\exists_{l \in \{1,...,n\}} \forall_{m \in \{1,...,n\}} \max_{i \in \{1,...,n\}} |u_{m,i}\bar{u}_{l,i}| \leq \frac{1}{2} \left(\sum_{j=1}^{n} |u_{m,j}\bar{u}_{l,j}| + \frac{1}{\sqrt{n}} \right).$$

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

Condition on Getting the Optimal State

Theorem

Let $U \in U_n(\mathbb{C})$. The necessary condition for the existance of $D \in \mathcal{D}U_n(\mathbb{C})$ such that $U^{\dagger}DU$ has a flat column:

$$\exists_{l \in \{1,...,n\}} \forall_{m \in \{1,...,n\}} \max_{i \in \{1,...,n\}} |u_{m,i}\bar{u}_{l,i}| \leq \frac{1}{2} \left(\sum_{j=1}^{n} |u_{m,j}\bar{u}_{l,j}| + \frac{1}{\sqrt{n}} \right).$$

Corollary

IF there exist: a permutation matrix Π and $D \in \mathcal{DC}_n(\mathbb{C}$ such that

$$\|U - D\Pi\|_{HS}^2 < 2 - 2\left(1/2\left(1 + n^{-1/2}\right)\right)^{1/2},$$

THEN Alice and Bob are NOT ABLE to generate a mutually coherent state after performing only two operations.

・ロト ・ 一下・ ・ ヨト・

Fixed Point Constraints (Thermodynamics)

医下 不良下

э

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

Fixed Point Constraints (Thermodynamics)

Notation:

- γ = (γ₁,..., γ_n), Γ = (Γ₁,..., Γ_n) arbitrary thermal states (probability vectors) with respect to different temperatures.
- $F_A = \{\gamma\}, F_B = \{\Gamma\}.$
- \mathcal{F}_A , \mathcal{F}_B the sets of all these stochastic operations for which γ and Γ are the fixed points.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Fixed Point Constraints (Thermodynamics)

Notation:

- γ = (γ₁,..., γ_n), Γ = (Γ₁,..., Γ_n) arbitrary thermal states (probability vectors) with respect to different temperatures.
- $F_A = \{\gamma\}, F_B = \{\Gamma\}.$
- \mathcal{F}_A , \mathcal{F}_B the sets of all these stochastic operations for which γ and Γ are the fixed points.

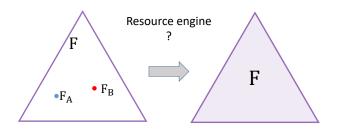
<u>Aim</u>: producing an arbitrary state from an *n*-dimensional simplex.

Fixed Point Constraints (Thermodynamics)

Notation:

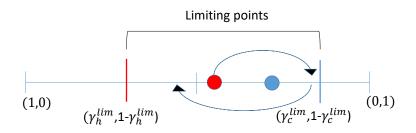
- γ = (γ₁,..., γ_n), Γ = (Γ₁,..., Γ_n) arbitrary thermal states (probability vectors) with respect to different temperatures.
- $F_A = \{\gamma\}, F_B = \{\Gamma\}.$
- \mathcal{F}_A , \mathcal{F}_B the sets of all these stochastic operations for which γ and Γ are the fixed points.

<u>Aim</u>: producing an arbitrary state from an *n*-dimensional simplex.



Condition on Getting All States (BIT CASE)

$$\Gamma = (\gamma_h, 1 - \gamma_h)$$
 $\gamma = (\gamma_c, 1 - \gamma_c)$

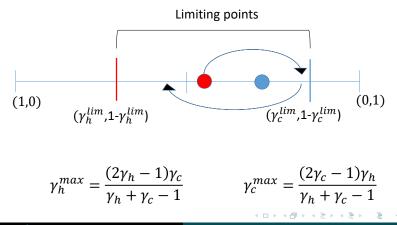


< ∃ ► < ∃ ►

Э

Condition on Getting All States (BIT CASE)

$$\Gamma = (\gamma_h, 1 - \gamma_h)$$
 $\gamma = (\gamma_c, 1 - \gamma_c)$



Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

Condition on Getting All States - While Having Access to a Maximally Mixed State

Theorem

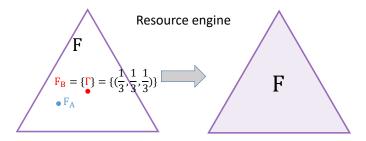
IF $\Gamma = (1/n, \dots, 1/n)$ and $\gamma \neq \Gamma$,

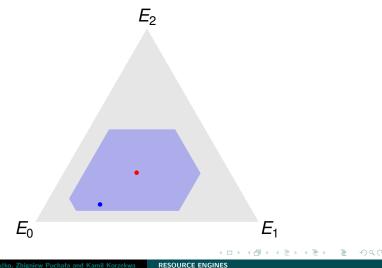
THEN Alice and Bob can produce any state of an n-dimensional simplex (and the rate of convergence is exponential).

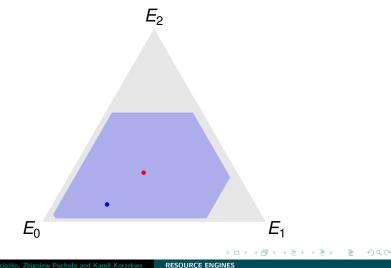
Condition on Getting All States - While Having Access to a Maximally Mixed State

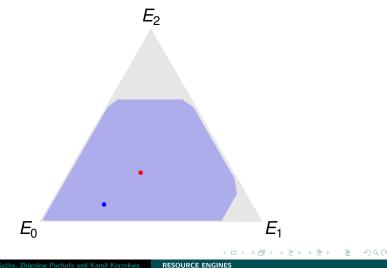
Theorem

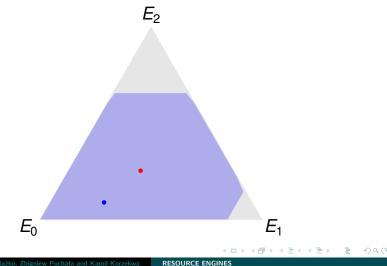
IF $\Gamma = (1/n, ..., 1/n)$ and $\gamma \neq \Gamma$, THEN Alice and Bob can produce any state of an n-dimensional simplex (and the rate of convergence is exponential).

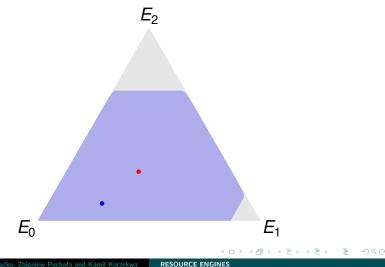


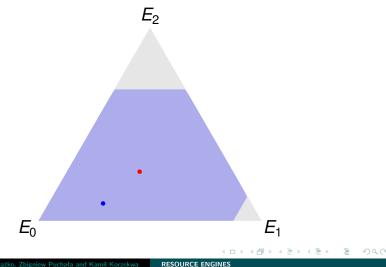


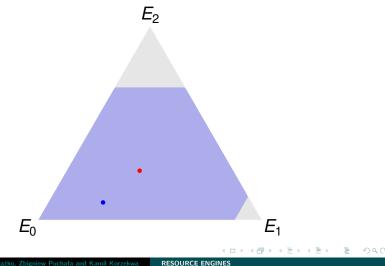


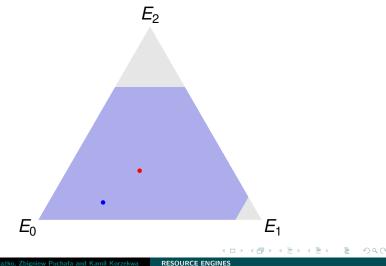


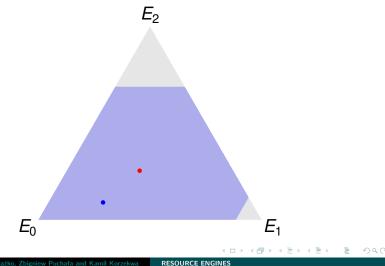




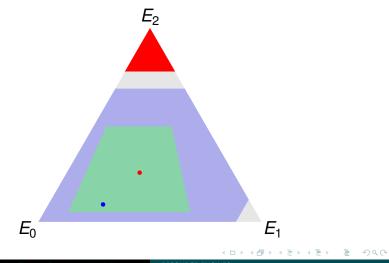








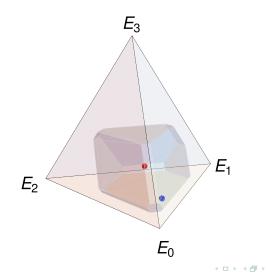
States Achievable After n Strokes



Hanna Wojewódka-Sciążko, Zbigniew Puchała and Kamil Korzekwa

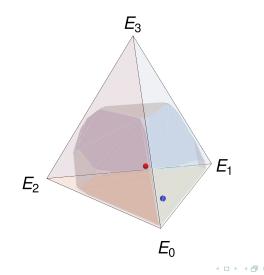
RESOURCE ENGINES

States Achievable After n Strokes



医下子 医下

States Achievable After n Strokes

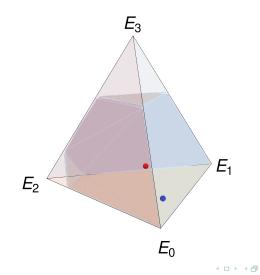


Hanna Wojewódka-Sciążko, Zbigniew Puchała and Kamil Korzekwa RESOUR

RESOURCE ENGINES

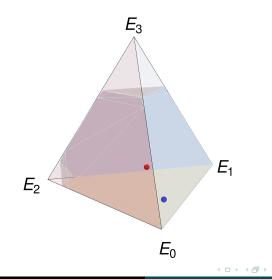
医下子 医下

States Achievable After n Strokes



- ∢ ⊒ ▶

States Achievable After n Strokes

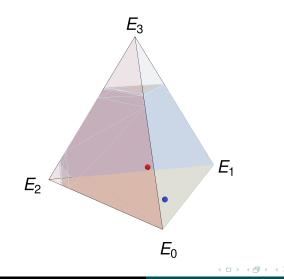


< ∃⇒

æ

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

States Achievable After n Strokes

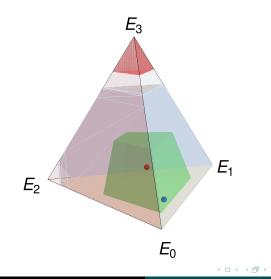


< ∃⇒

æ

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES

States Achievable After n Strokes



Hanna Wojewódka-Sciążko, Zbigniew Puchała and Kamil Korzekwa RESOUR

RESOURCE ENGINES

- ∢ ⊒ ▶

Acknowledgments

Thank You for Your Attention

We acknowledge the support of the Foundation for Polish Science (FNP) within the project Near-term Quantum Computers: challenges, optimal implementations and applications under Grant Number POIR.04.04.00-00-17C1/18-00.

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES