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Motivation
Coherence Engines

Fixed Point Constraints (Thermodynamics)

From Heat Engines to Resource Engines

Thermodynamic inspirations:

• Access to a single heat bath
→
Access to a single set of constrained free operations.

• Access to 2 heat baths (heat engines) – the system is subsequently
connected to the hot and cold bath.
→
Access to 2 sets of constrained free operations (resource engines)
– The system is sent to Alice and Bob in turns
and can be transformed by them.

Motivation:

• Resource engines – provide a natural way of fusing various resource
theories (in the spirit of multi-resource theories).

[C. Sparaciari, L. Del Rio, C. M. Scandolo, P. Faist, and J. Oppenheim,

Quantum 4, 259, 2020.]

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES



Motivation
Coherence Engines

Fixed Point Constraints (Thermodynamics)

From Heat Engines to Resource Engines

Thermodynamic inspirations:

• Access to a single heat bath
→
Access to a single set of constrained free operations.

• Access to 2 heat baths (heat engines) – the system is subsequently
connected to the hot and cold bath.
→
Access to 2 sets of constrained free operations (resource engines)
– The system is sent to Alice and Bob in turns
and can be transformed by them.

Motivation:

• Resource engines – provide a natural way of fusing various resource
theories (in the spirit of multi-resource theories).

[C. Sparaciari, L. Del Rio, C. M. Scandolo, P. Faist, and J. Oppenheim,

Quantum 4, 259, 2020.]

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES



Motivation
Coherence Engines

Fixed Point Constraints (Thermodynamics)

From Heat Engines to Resource Engines

Thermodynamic inspirations:

• Access to a single heat bath
→
Access to a single set of constrained free operations.

• Access to 2 heat baths (heat engines) – the system is subsequently
connected to the hot and cold bath.

→
Access to 2 sets of constrained free operations (resource engines)
– The system is sent to Alice and Bob in turns
and can be transformed by them.

Motivation:

• Resource engines – provide a natural way of fusing various resource
theories (in the spirit of multi-resource theories).

[C. Sparaciari, L. Del Rio, C. M. Scandolo, P. Faist, and J. Oppenheim,

Quantum 4, 259, 2020.]

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES



Motivation
Coherence Engines

Fixed Point Constraints (Thermodynamics)

From Heat Engines to Resource Engines

Thermodynamic inspirations:

• Access to a single heat bath
→
Access to a single set of constrained free operations.

• Access to 2 heat baths (heat engines) – the system is subsequently
connected to the hot and cold bath.
→
Access to 2 sets of constrained free operations (resource engines)
– The system is sent to Alice and Bob in turns
and can be transformed by them.

Motivation:

• Resource engines – provide a natural way of fusing various resource
theories (in the spirit of multi-resource theories).

[C. Sparaciari, L. Del Rio, C. M. Scandolo, P. Faist, and J. Oppenheim,

Quantum 4, 259, 2020.]

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES



Motivation
Coherence Engines

Fixed Point Constraints (Thermodynamics)

From Heat Engines to Resource Engines

Thermodynamic inspirations:

• Access to a single heat bath
→
Access to a single set of constrained free operations.

• Access to 2 heat baths (heat engines) – the system is subsequently
connected to the hot and cold bath.
→
Access to 2 sets of constrained free operations (resource engines)
– The system is sent to Alice and Bob in turns
and can be transformed by them.

Motivation:

• Resource engines – provide a natural way of fusing various resource
theories (in the spirit of multi-resource theories).

[C. Sparaciari, L. Del Rio, C. M. Scandolo, P. Faist, and J. Oppenheim,

Quantum 4, 259, 2020.]

Hanna Wojewódka-Ściążko, Zbigniew Puchała and Kamil Korzekwa RESOURCE ENGINES



Motivation
Coherence Engines

Fixed Point Constraints (Thermodynamics)

From Heat Engines to Resource Engines

Alice Bob

FA – free operations FB – free operations
FA – free states FB – free states

communication rounds (strokes)
ρ ∈ FA

φi ∈ FA ψi ∈ FB

ρ
↘

ψ1(ρ)
↙

φ1 (ψ1(ρ))
↘

...
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Research Questions

Can we achieve all possible final states starting from free
states?

Resource engine
?

F
F

FA

FB
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Research Questions

Can a resource engine defined by 2 constraints
generate a full set of quantum operations?

Resource engine
?

F
F

F A

F B
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Fixed Point Constraints (Thermodynamics)

Research Questions

Can we bound the number of strokes
needed to obtain the above,

and thus study the equivalents of engine’s power and
efficiency?
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Exemplary Models of Resource Engines

1. Coherence engines. 2. Fixed point constraints.

Agents constrained to Thermodynamic scenario
performing unitaries diagonal with access to hot and cold baths,

in 2 different bases. but with agents not allowed to
use any ancillary systems.

for simplicity: theory restricted for simplicity: theory restricted
to pure states to incoherent states

related to: the problem of
controllability by 2 different

incommensurable Hamiltonians
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Coherence Engines
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Motivation
Coherence Engines

Fixed Point Constraints (Thermodynamics)

Notation and Assumptions

• Un(C) – a group of unitary matrices of order n ­ 2 over C.

• DUn(C) – a subgroup of Un(C) consisting of diagonal matrices.

• Sets of free operations:

FA = DUn(C) and

FB = {U†DU : D ∈ DUn(C)} with an arbitrarily fixed U ∈ Un(C).

• Exemplary sets of free states:

FA – the set of all pure basis states {|i〉}ni=1 and

FB – the set of all pure rotated basis states {U†|i〉}ni=1.

• For U ∈ Un(C), define PU = (pij)
n
i,j=1 by

pij =

{
0 for uij = 0
1 for uij 6= 0

.
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Condition on Generating All Operations

Resource engine
?

F
F

F A

F B
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Condition on Generating All Operations

(H1) There exist a constant N ∈ N and matrices D1, . . . ,D2N ∈ DUn(C)
such that

D1
(
U†D2U

)
D3
(
U†D4U

)
. . .D2N−1

(
U†D2NU

)
is a matrix with all non-zero entries.

(H2) There exists a constant N ∈ N such that(
PT
U PU

)N
is a matrix with all non-zero entries.

Lemma

Hypothesis (H2) and (H1) are equivalent.
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Condition on Generating All Operations

Resource engine
?

F
F

F A

F B

Theorem

IF U (appearing in the definition of FB) satisfies either (H1) or (H2),
THEN any unitary matrix can be written as a product comprised of
N matrices from FA and N matrices from FB .

[Z. Borevich and S. Krupetskij, J. Sov. Math. 17, 1718 (1981)]
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Examples

Example (negative)

There exist unitary matrices which do not satisfy condition (H2), e.g.
1 0 0 0
0 1 0 0
0 0 1√

2
− 1√

2
0 0 1√

2
1√
2

 .
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Link to the Theory of Markov Chains

Theorem

Let X be an irreducible and aperiodic Markov chain with finite state
space and transition matrix Π. THEN there exists a finite constant M
such that for all m ­ M

Πij(m) > 0 for all states i , j ∈ Σ,

meaning that Π(m) is a matrix with all non-zero entries, and so any
two states are communicating.

Π(0) = 1, Π(1) = P, Πij(m) =
∑
k∈E

ΠikΠkj(m − 1) for m ∈ N
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Examples

Example (positive)

A transition matrix of some irreducible and aperiodic finite Markov chain:

Π =


0 0 0.1 0.1 0.7 0.1

0.2 0.3 0.4 0.1 0 0
0.1 0.9 0 0 0 0
0.2 0.2 0.3 0.3 0 0
0 0 0 0 0.5 0.5
0 0 0.4 0.3 0.1 0.2



The corresponding unitary matrix (with the same pattern of zero/ non-zero elements):

U =


0 0 − 1

2
1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2 0 0

−
√

2
2

√
2

2 0 0 0 0
− 1

2 − 1
2 − 1

2 − 1
2 0 0

0 0 0 0
√

2
2 −

√
2

2
0 0 1

2 − 1
2

1
2

1
2

 .
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Bounding the Number of Strokes
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Bounding the Number of Strokes – INTUITIONS

A single-qubit system with:

• F1, F2 – states diagonal in the σz and cosασz + sinασx eigenbases

• F1, F2 – unitary rotations around the appropriate axes
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Bounding the Number of Strokes – INTUITIONS

• α = π/2: just one operation is needed.

• α < π/2: dπ/(2α)e operations
(done subsequently by Alice and Bob) are needed.
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Bounding the Number of Strokes
Needed to Generate All Operations (QUBIT CASE)

As a corollary of the result established in:
[M. Hamada, Royal Society Open Science 1 (2014)], we obtain:

Theorem (qubit case)

Alice and Bob,
restricted to apply operations from FA and FB , consisting of rotations
about three-dimensional real unit vectors m̂ and n̂ (rotated with respect
to each other by α),
can generate any unitary matrix with the minimal number of alternated
rotations about vectors m̂ and n̂ equal to⌈π

α

⌉
+ 1.
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Bounding the Number of Strokes Needed
to Generate All Operations – THE LOWER BOUND

Theorem

The number 2N of operations that Alice and Bob need to perform
(N by Alice, and N Bob) in order to generate an arbitrary unitary matrix
of order n is bounded from below by

log (n − 1)

log ((n − 2)cU + 1)
for n ∈ N\{1, 2} and

1
cU

for n = 2,

where

cU := max
a,b∈{1,...,n}: a 6=b

n∑
j=1

|uj,a| |uj,b|

(equivalently, cU = maxa,b∈{1,...,n}: a 6=b

〈
a
∣∣(XT

U XU

)∣∣ b〉
with xi,j = |ui,j | for all i , j ∈ {1, . . . , n}).
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Bounding the Number of Strokes Needed
to Generate All Operations – THE UPPER BOUND

[M. Huhtanen and A. Perämäki, J. Fourier Anal. Appl. (2015)]

A generic matrix A ∈ Cn×n is shown to be the product of circulant and
diagonal matrices with the number of factors being 2n − 1 at most.

U = D1C1 . . .Dn−1Cn−1Dn 2n − 1 factors

Every circulant matrix can be written as a product of a Fourier trans-
form, a diagonal matrix, and an inverse Fourier transform.

U = D1
(
FDC1F

−1) . . .Dn−1
(
FDCn−1F

−1)Dn

n + (n − 1)(2M+ 1) factors

M – number of operations needed to generate a Fourier matrix (open)
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F B

Resource engine
?

F
F

FA

FB
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Condition on Getting the Optimal State

For any two bases {|ai 〉}ni=1 and {|bi 〉}ni=1 of an n-dimensional Hilbert space
there exist at least 2n−1 states |ψ∗〉 unbiased in both these bases

|〈ai |ψ∗〉| = |〈bi |ψ∗〉| =
1√
n

for all i ∈ {1, . . . , n}.

|ψ∗〉 – a mutually coherent (or maximally mutually coherent) state.

[M. Idel, M.M. Wolf, Linear Algebra Its Appl. 471, 76–84 (2015)]
[K. Korzekwa, D. Jennings, and T. Rudolph, Phys. Rev. A 89, 052108 (2014)]
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Condition on Getting the Optimal State
– Within a Single Stroke (QUBIT CASE)

Theorem

Let U ∈ U2(C) be such that

U = e iφ
[

e iϕ0 cos(ϕ) −e−iϕ1 sin(ϕ)
e iϕ1 sin(ϕ) e−iϕ0 cos(ϕ)

]
with ϕ ∈ [π/8, 3π/8].

THEN Alice and Bob can produce a mutually coherent state after
performing only two operations

The necessary cond. for n = 2: π/8 ¬ ϕ ¬ 3π/8
– follows from the triangle inequalities.

For bigger n it follows form generalized polygon inequalities.
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Condition on Getting the Optimal State

Theorem

Let U ∈ Un(C). The necessary condition for the existance of
D ∈ DUn(C) such that U†DU has a flat column:

∃l∈{1,...,n} ∀m∈{1,...,n} max
i∈{1,...,n}

|um,i ūl,i | ¬
1
2

 n∑
j=1

|um,j ūl,j |+
1√
n

 .

Corollary

IF there exist: a permutation matrix Π and D ∈ DCn(C such that

‖U − DΠ‖2
HS < 2− 2

(
1/2

(
1 + n−1/2

))1/2
,

THEN Alice and Bob are NOT ABLE to generate a mutually coherent
state after performing only two operations.
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|um,i ūl,i | ¬
1
2

 n∑
j=1

|um,j ūl,j |+
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Fixed Point Constraints (Thermodynamics)

Notation:
• γ = (γ1, . . . , γn), Γ = (Γ1, . . . , Γn) – arbitrary thermal states

(probability vectors) with respect to different temperatures.
• FA = {γ}, FB = {Γ}.
• FA, FB – the sets of all these stochastic operations for which γ and

Γ are the fixed points.

Aim: producing an arbitrary state from an n-dimensional simplex.

Resource engine
?

F

F

FA
FB
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Condition on Getting All States (BIT CASE)

Γ = (γh, 1− γh) γ = (γc , 1− γc)

Limiting points

(1,0) (0,1)
(𝛾𝛾ℎ𝑙𝑙𝑙𝑙𝑙𝑙,1-𝛾𝛾ℎ𝑙𝑙𝑙𝑙𝑙𝑙) (𝛾𝛾𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,1-𝛾𝛾𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙)
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Condition on Getting All States
– While Having Access to a Maximally Mixed State

Theorem

IF Γ = (1/n, . . . , 1/n) and γ 6= Γ,
THEN Alice and Bob can produce any state of an n-dimensional simplex
(and the rate of convergence is exponential).

Resource engine

F

F

FA

FB = {Γ} = {(
1
3

,
1
3

,
1
3

)}
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States Achievable After n Strokes

E0 E1

E2
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