CATALYSIS IN ACTION VIA ELEMENTARY THERMAL OPERATIONS

JEONGRAK SON

W/ NELLY H. Y. NG

NANYANG QUANTUM HUB

im.Q

Why does a catalyst help?

chemical catalysis

5 MOTIVATION

Why does a catalyst help?

6 MOTIVATION

CATALYSIS IN ACTION VIA ELEMENTARY THERMAL OPERATIONS

7 MOTIVATION

CATALYSIS IN ACTION

1) understand what happens during catalysis

VIA ELEMENTARY THERMAL OPERATIONS

Lostaglio et al., Quantum **2**, 52 (2018)

2) develop more realistic catalytic processes

MOTIVATION: THERMAL OPERATIONS 8

 $\rho_S \xrightarrow{\text{TO}} \eta_S \Leftrightarrow \eta_S = \text{Tr}_B \quad U_{SB} \left(\rho_S \otimes \tau_B^\beta \right) U_{SB}^\dagger$

• β : fixed ambient temperature • H_S , H_B are fixed once chosen • $\tau_{R}^{\beta} = e^{-\beta H_{B}}/Z$: Gibbs state w.r.t. β, H_{B} • U_{SB} : global unitary s.t. $[U_{SB}, H_S + H_R] = 0$

9 MOTIVATION: THERMAL OPERATIONS

$\eta_{S} = \operatorname{Tr}_{B} \left[U_{SB} \left(\rho_{S} \otimes \tau_{B}^{\beta} \right) U_{SB}^{\dagger} \right]$

Needs complicated bath and unitary \rightarrow hard to implement Horodecki and Oppenh

Horodecki and Oppenheim, Nat. Comm. 4, 2059 (2013)

Focus only on initial/final states

 \rightarrow elusive dynamics

10 ELEMENTARY THERMAL OPERATIONS (ETO)

better implementability

TO hard to implement elusive dynamics

better characterization

Lostaglio et al., Quantum 2, 52 (2018) Elementary Thermal Operations (ETO)

> harmonic oscillator bath interacting w/ 2-lvls of system

11 ELEMENTARY THERMAL OPERATIONS (ETO)

intensity-dep. Jaynes-Cummings

 ∞

$H_{\text{int}} = g \sum_{n=1}^{\infty} \left(\sigma^+ |n-1\rangle \langle n| + \sigma^- |n\rangle \langle n-1| \right)$

Sys

Bath

Jaynes-Cummings type interaction

Bath

Sys

 au_1^{eta}

Bath

Sys

trajectory arises from step-wise structure

12 CATALYTIC ELEMENTARY THERMAL OPERATIONS (CETO)

Catalytic advantage w/straightforward recipereal-time trajectory

•Small

• qutrit sys \otimes qubit cat = 6 dim. \rightarrow manageable

• Exact

• no correlation & error \rightarrow most conservative

1. Useful qubit catalysis exists for ETO

2. Catalysts can be understood as temporary free energy storage

3. Existing computational cost for ETO is improved

* Consider only energy incoherent states

15 RESULT 1: USEFUL QUBIT CATALYSIS EXISTS

16 RESULT 1: USEFUL QUBIT CATALYSIS EXISTS

1. Useful qubit catalysis exists for ETO

2. Catalysts can be understood as temporary free energy storage

3. Existing computational cost for ETO is improved

* Consider only energy incoherent states

snapshots of system reduced states

1. Useful qubit catalysis exists for ETO

2. Catalysts can be understood as temporary free energy storage

3. Existing computational cost for ETO is improved

* Consider only energy incoherent states

24 RESULT 3: TIGHTENING THE BOUND

 $eta^{(i,j)}$: maximal swap between levels i and j

25	RESULT 3: TIGHTEN	IING THE BOUND $n \le \left\lfloor \frac{d! - 4}{d - 3} \right\rfloor$	polynomial scaling ℓ_{\max} for special class of initial states	of ses
	max. len.	Theory	Numerics	N: #ext. points
	d=3	3 (proved separately)	3	
	d=4	20	8	$N \sim 50$
	d=5	58	16	$N \sim 700$
	d=6	238	23	$N \sim 7 \times 10^3$
	d=7	1259	38	$N \sim 1.6 \times 10^6$

26 TAKE-HOME MESSAGES

• Simple catalytic process exists

• ETO is a nice playground to study catalysis

Free energy evolution provides insights into the arXiv:2209.15213 origin of catalytic power

And many more in our recent preprint!

