Finite-size catalysis in quantum resource theories

Patryk Lipka-Bartosik and Kamil Korzekwa

UNIVERSITÉ DE GENĖVE

Collective transformations

$$
\begin{aligned}
& \Lambda\left(\rho^{\otimes n}\right) \approx \sigma^{\otimes m} \\
& \text { Basic question: What is the optimal rate? } \\
& R_{\epsilon}^{n}(\rho, \sigma)=\sup \left\{\left.\frac{m}{n} \right\rvert\, \inf _{\Lambda \in F}\left\|\Lambda\left(\rho^{\otimes n}\right)-\sigma^{\otimes m}\right\|<\epsilon\right\} \\
& R_{\epsilon}^{\infty}(\rho, \sigma):=\lim _{n \rightarrow \infty} R_{\epsilon}^{n}(\rho, \sigma)
\end{aligned}
$$

M. Horodecki, J. Oppenheim, Int. J. Mod. Phys. B (2013)
G. Gour et. al., Phys. Rep. (2015)
E. Chitambar, G. Gour, Rev. Mod. Phys. (2019)

Collective transformations

$\mathrm{TO}\left(\rho^{\otimes n}\right) \approx \sigma^{\otimes m}$
Basic question: What is the optimal rate?
Example: Thermodynamics (thermal operations)

$$
\begin{aligned}
R_{\epsilon}^{\infty}(\rho, \sigma) & :=\lim _{n \rightarrow \infty} R_{\epsilon}^{n}(\rho, \sigma) \quad \gamma \propto e^{-\beta H} \\
& =\frac{D(\rho \| \gamma)}{D(\sigma \| \gamma)}
\end{aligned}
$$

Collective transformations

$$
\operatorname{LOCC}\left(\psi_{A B}^{\otimes n}\right) \approx \phi_{A B}^{\otimes m}
$$

Basic question: What is the optimal rate?
Example: Pure-state entanglement (LOCC)

$$
\begin{aligned}
R_{\epsilon}^{\infty}(\psi, \phi) & :=\lim _{n \rightarrow \infty} R_{\epsilon}^{n}(\psi, \phi) \\
& =\frac{H\left(\psi_{A}\right)}{H\left(\phi_{A}\right)}
\end{aligned}
$$

Catalytic transformations

$$
\Lambda(\rho \otimes \omega) \approx \sigma \otimes \omega
$$

Basic question: When is this possible?

Catalytic transformations

Catalytic transformations

Catalytic transformations

Catalytic transformations

R. Gallego et. al., New J. Phys. (2016)

Catalytic transformations

Correlated-catalytic free transformation between ρ_{S} and σ_{S} exists if for any $\epsilon>0$ there is a catalytic system C in a state ω_{C} and a free operation Λ so that

$$
\Lambda\left[\rho_{S} \otimes \omega_{C}\right]=\eta_{S C}
$$

where

$$
\begin{aligned}
& \eta_{C}=\omega_{C} \\
& \left\|\eta_{S}-\sigma_{S}\right\|<\epsilon
\end{aligned}
$$

$$
\rho_{S} \xrightarrow[\mathcal{F}]{\epsilon} \sigma_{S}
$$

weak correlations

$$
\left\|\eta_{S C}-\sigma_{S} \otimes \omega_{C}\right\|<o(\epsilon)
$$

Catalytic transformations

Example: Thermodynamics (thermal operations)

$$
D(\rho \| \gamma)>D(\sigma \| \gamma) \quad \gamma \propto e^{-\beta H}
$$

Catalytic transformations

$$
\psi \underset{\text { LOCC }}{\underset{\longrightarrow}{\longrightarrow}} \phi
$$

Example: Entanglement (LOCC)

$$
H\left(\psi_{A}\right)>H\left(\phi_{A}\right)
$$

Catalytic transformations

$$
H(\rho)>H(\sigma)
$$

Catalytic transformations

$$
\rho \underset{\mathcal{F}}{\epsilon} \sigma
$$

Problem: What about the size of the catalyst?

Catalytic transformations

$$
\Lambda(\rho \otimes \omega) \approx \sigma \otimes \omega \quad \Leftrightarrow \quad D(\rho \| \gamma)>D(\sigma \| \gamma)
$$

requires infinitely large catalysts

Problem: What about the size of the catalyst?

Example: Thermodynamics (thermal operations)

$$
D(\rho \| \gamma) \approx D(\sigma \| \gamma) \longrightarrow d_{C} \approx \infty
$$

Results

Suppose the rate $R_{\epsilon}^{n}(\rho, \sigma)$ can be written as

$$
R_{\epsilon}^{n}(\rho, \sigma)=R^{\infty}(\rho, \sigma)-\frac{1}{\sqrt{n}} R_{\epsilon}^{\prime}(\rho, \sigma)-o\left(\frac{1}{\sqrt{n}}\right) .
$$

Examples:

- Entanglement (LOCC),
W. Kumagai and M. Hayashi, IEEE Trans. Inf. Theory (2017)
- Thermodynamics (thermal operations),
C. Chubb et. al., Quantum (2018)
- Coherence (incoherent operations),
C. Chubb et. al., Quantum (2018)
- Classical communication (quantum channels).
C. Chubb et. al., Comm. Math. Phys. (2017)

Main Result

If $R^{\infty}(\rho, \sigma)>1$ then for all $\epsilon>0$ there exists a correlated-catalytic free operation

$$
\rho \underset{\mathcal{F}}{\epsilon} \sigma
$$

with a catalyst C of dimension $d=e^{O(n)}$ where

$$
n=\left(\frac{R_{\epsilon}^{\prime}(\rho, \sigma)}{R^{\infty}(\rho, \sigma)-1}\right)^{2}
$$

Main Result

If $R^{\infty}(\rho, \sigma)>1$ then for operation
with a catalyst C of dime

$$
n=\left(\frac{R_{\epsilon}^{\prime}(\rho, \sigma)}{R^{\infty}(\rho, \sigma)-1}\right)^{2}
$$

Application: Thermodynamics (thermal operations)

Let ρ and σ be such that $[\rho, H]=0$ and $[\sigma, H]=0$. Assume for some $\epsilon>0$ we have

$$
D(\rho \| \gamma)>D(\sigma \| \gamma)
$$

Then $\rho \underset{\text { T0 }}{\stackrel{\epsilon}{\longrightarrow}} \sigma$.

Application: Thermodynamics (thermal operations)

Let ρ and σ be such that $[\rho, H]=0$ and $[\sigma, H]=0$. Assume for some $\epsilon>0$ we have

$$
D(\rho \| \gamma)>D(\sigma \| \gamma)+\frac{c(\epsilon)}{\sqrt{\log d}}
$$

Then $\rho \underset{\text { TO }}{\epsilon} \sigma$ with a catalyst of dimension d.

Application: Thermodynamics (thermal operations)

Let ρ and σ be such that $[\rho, H] \neq 0$ and $[\sigma, H]=0$. Assume for some $\epsilon>0$ we have

$$
D(\rho \| \gamma)>D(\sigma \| \gamma)+\frac{c^{\prime}(\epsilon)}{\sqrt{\log d}}
$$

Then $\rho \underset{\text { T0 }}{\stackrel{\epsilon}{\longrightarrow}} \sigma$ with a catalyst of dimension d (sufficiently large).

Application: Thermodynamics (thermal operations)

$$
D(\rho \| \gamma)>D(\sigma \| \gamma)+\frac{c(\epsilon)}{\sqrt{\log d}}
$$

Application: Thermodynamics (thermal operations)

$$
D(\rho \| \gamma)>D(\sigma \| \gamma)+\frac{c(\epsilon)}{\sqrt{\log d}}
$$

Resonance in non-asymptotic transformations

$$
\begin{aligned}
& R_{\epsilon}^{n}(\rho, \sigma)=R^{\infty}(\rho, \sigma)-\frac{1}{\sqrt{n}} R_{\epsilon}^{\prime}(\rho, \sigma)-o\left(\frac{1}{\sqrt{n}}\right) \\
& R_{\epsilon}^{\prime}(\rho, \sigma) \rightarrow 0 \quad \Leftrightarrow \quad v \rightarrow 1 \\
& v:=\frac{V(\rho \| \gamma) / D(\rho \| \gamma)}{V(\sigma \| \gamma) / D(\sigma \| \gamma)}
\end{aligned}
$$

Application: Thermodynamics (thermal operations $\beta=0$)

$$
D(\rho \| \gamma)>D(\sigma \| \gamma)+\frac{c(\epsilon)}{\sqrt{\log d}}
$$

Application: Thermodynamics (thermal operations $\beta=0$)

$$
H(\sigma)>H(\rho)+\frac{c(\epsilon)}{\sqrt{\log d}}
$$

Application: Thermodynamics (thermal operations $\beta=0$)

$$
H(\sigma)>H(\rho)+\frac{c(\epsilon)}{\sqrt{\log d}}
$$

Initial: $\rho=\operatorname{diag}\left(\boldsymbol{p}_{\mathbf{i n i}}\right)$
Final: a family $\left\{\sigma_{k}\right\}$ with $\sigma_{k}=\operatorname{diag}\left(\boldsymbol{p}_{\text {fin }}\right)$ with $H\left(\sigma_{k} \| \gamma\right)=$ const

Goal: Perform $\rho \underset{\text { TO }}{\epsilon} \sigma_{k}$

Resonance: $c(\epsilon) \rightarrow 0$ for any $\epsilon>0$

Application: Thermodynamics (thermal operations $\beta=0$)

$$
H(\sigma)>H(\rho)+\frac{c(\epsilon)}{\sqrt{\log d}}
$$

Resonance: $c(\epsilon) \rightarrow 0$ for any $\epsilon>0$

Take-home messages

Correlated-catalytic operations "emulate" collective operations

Collective effects (e.g. resonance) have counterparts in catalytic operations

Finite-size corrections to asymptotic rates imply bounds on the catalyst's size

Thank you!

Resonance

$$
R_{\epsilon}^{\infty}(\rho, \sigma)=\frac{D(\rho \| \gamma)}{D(\sigma \| \gamma)}, \quad R_{\epsilon}^{\prime}(\rho, \sigma)=\sqrt{\frac{D(\rho \| \gamma) V(\sigma \| \gamma)}{D(\sigma \| \gamma)^{3}}} f_{v}(\epsilon), \quad v:=\frac{V(\rho \| \gamma) / D(\rho \| \gamma)}{V(\sigma \| \gamma) / D(\sigma \| \gamma)}
$$

$$
\rho(\lambda)=\rho_{1}^{\otimes \lambda n} \otimes \rho_{2}^{\otimes(1-\lambda) n}
$$

$$
\operatorname{LOCC}(\rho(\lambda)) \approx_{a} \sigma^{\otimes n}
$$

$$
c(\epsilon) \rightarrow 0 \text { is equivalent to having } f_{v}(\epsilon) \rightarrow 0
$$

Application: Thermodynamics (thermal operations)

Let ρ and σ be such that $[\rho, H] \neq 0$ and $[\sigma, H]=0$. Assume for some $\epsilon>0$ we have

Then $\rho \underset{\text { TO }}{\epsilon} \sigma$ with a catalyst of dimension d.

$$
D(\rho \| \gamma)-D(\sigma \| \gamma)>\frac{c(\epsilon)}{\sqrt{\log d}}+o(1)
$$

$$
D(\rho \| \gamma)-D(\sigma \| \gamma)>\frac{c^{\prime}(\epsilon)}{\sqrt{\log d} .}
$$

Suppose we can prepare any catalyst of a fixed dimension $d=e^{O(n)}$.
What is the error ϵ of our transformation?

Application: Thermodynamics (thermal operations)

State transformations

$\Lambda(\rho) \approx \sigma \quad \Lambda \in \mathcal{F}$ (free operations)

Basic question: When is this possible?
M. Horodecki, J. Oppenheim, Int. J. Mod. Phys. B 1345019 (2013)
E. Chitambar, G. Gour, Rev. Mod. Phys. 91, 025001 (2019)

Basic Lemma

Suppose $R_{\epsilon}^{n}(\rho, \sigma)>1$ for some $\epsilon>0$ and some $n \in \mathbb{N}$. Then

$$
\rho_{S} \xrightarrow[\mathcal{F}]{\boldsymbol{\epsilon}} \sigma_{S}
$$

with a catalyst C of dimension d satisfying

$$
\log d=O(n)
$$

Application: Thermodynamics (thermal operations)

Let ρ and σ be such that $[\rho, H] \neq 0$ and $[\sigma, H]=0$. Assume for some $\epsilon>0$ we have

Then $\rho \underset{\text { TO }}{\stackrel{\epsilon}{\longrightarrow}} \sigma$ with a catalyst of dimension d.

$$
D(\rho \| \gamma)>D(\sigma \| \gamma)+\frac{c(\epsilon)}{\sqrt{\log d}}+o(1)
$$

$$
D(\rho \| \gamma)-D(\sigma \| \gamma)>\frac{c^{\prime}(\epsilon)}{\sqrt{\log d}} .
$$

