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Motivation

What happens to the gravitational field of a mass placed in a spatial
superposition?1

1 The gravitational field follows matter −→ enters a superposition
−→ creates entanglement with test particle

2 Gravity is classical −→ no superposition
−→ something else happens

Can we discriminate between these two options, experimentally?

1Feynman, Chapel Hill conference, 1957.
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General system of interest:

1 Gravity acts as the unitary UG = e−iHG t/ℏ, where2

HG = Newtonian Hamiltonian = −
∑

i<j

Gmimj

∥r⃗i − r⃗j∥

2 Gravity is an underlying classical field:

Interaction must be an LOCC!

(= local operations and clas-
sical communication)

2Carney, Stamp, and Taylor, Class. Quantum Grav. 36, 034001, 2019.
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The problem

Main question

Given an isometry U : A1 . . .An → A′
1 . . .A

′
n on a multi-partite quantum

system 1 : 2 : . . . : n, how well can it be simulated by means of LOCC?

Several figures of merit are possible.

In practice, the initial states of the system are limited by technology.

We can only prepare states from the ensemble E = {pα, |ψα⟩}α
−→ a good figure of merit is

Fcℓ(E,U) ..= sup
Λ∈LOCC(A→A′)

∑
α

pα Tr [Λ(ψα)ψ
′
α] ,

ψ′
α

..= U |ψα⟩⟨ψα|U† .

Tr [Λ(ψα)ψ
′
α] = fidelity between simulated state Λ(ψα) and target ψ′

α.
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Operational interpretation

P(a|U) =
∑
α

pα Trψ′
αUψαU

† = 1 ,

P(a|LOCC) =
∑
α

pα Trψ′
αΛ(ψα) ≤ Fcℓ(E,U) .

If outcome a is recorded with frequency > Fcℓ(E,U), then ̸= LOCC
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A key tool

Theorem 1

For all ensembles E = {pα, ψα}α and isometries U : A→ A′, it holds that

Fcℓ(E,U) ≤ min
J⊆[n]

inf
{
κ > 0 : RΓJ

AA′ ≤ κ ωA ⊗ 1A′ , ωA ∈ D(HA)
}
,

RAA′ ..=
∑
α

pα (ψ∗
α)A ⊗ (ψ′

α)A′ ,

where ψ′
α = UψαU

† and ΓJ = partial transpose on AJ and A′
J .

Example: n = 2, J = {2}; then(
XA1 ⊗ YA2 ⊗WA′

1
⊗ ZA′

2

)ΓJ = XA1 ⊗ Y ⊺
A2
⊗WA′

1
⊗ Z⊺

A′
2
.

Any choice of J and ωA gives you a SDP-computable upper bound.

Alternative re-writing with conditional min-entropy:3

Fcℓ(E,U) ≤ min
J⊆[n]

exp [−Hmin(A
′|A)RΓJ ]

3Renner, PhD thesis (ETH Zürich, 2005), arXiv:quant-ph/0512258.
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Proof.

Fcℓ(E,U) = sup
Λ∈LOCC

∑
α

pα ⟨ψ′
α|Λ(ψα)|ψ′

α⟩

DAA′

Λ =
∑
i,j

|i⟩⟨j |A⊗ Λ(|i⟩⟨j |)A′ → = sup
Λ∈LOCC

∑
α

pα ⟨ψ∗
αψ

′
α

∣∣DAA′

Λ

∣∣ψ∗
αψ

′
α⟩

RAA′ =
∑
α

pα(ψ
∗
α)A ⊗ (ψ′

α)A′ → = sup
Λ∈LOCC

Tr
[
RAA′DAA′

Λ

]
= sup

Λ∈LOCC
min
J⊆[n]

Tr

[
RΓJ
AA′

(
DAA′

Λ

)ΓJ
]

PPT criterion

RΓJ

AA′≤ κωA ⊗ 1A

}
→ ≤ sup

Λ∈LOCC
κTr

[
(ωA ⊗ 1A′)

(
DAA′

Λ

)ΓJ
]

TrA′

(
DAA′

Λ

)ΓJ

= 1A → = sup
Λ∈LOCC

κ

= κ .
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(ωA ⊗ 1A′)

(
DAA′

Λ

)ΓJ
]

TrA′

(
DAA′

Λ

)ΓJ

= 1A → = sup
Λ∈LOCC

κ

= κ .
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Application to a specific system

System of interest:
mechanical oscillators.

HG = −
∑

i<j

Gmimj

∥r⃗i − r⃗j∥
.

Each oscillator is 1-dim. Hilbert space L2(R)⊗n ≃ L2(Rn).

Canonical operators r ..= (x1, p1, . . . , xn, pn)
⊺. Commutation

relations

[r , r⊺] = iΩ , Ω ..=

(
0 1
−1 0

)⊕n

.

Coherent states are ‘easy’ to prepare. Single mode:

C ∋ α = αR + iαI −→ |α⟩ ..= exp
[
i
√
2 (αI x − αRp)

]
|0⟩ .
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Gaussian coherent state ensemble. λ > 0, fixed n: i.i.d. ensemble

Eλ
..=

{
pλ(α) d

2α, |α⟩⟨α|
}⊗n

α∈C , pλ(α) ..=
λ

π
e−λ|α|2 .

Gaussian unitary UG:

Definition #1:
U†

G r UG = Sr + δ ;

S : 2n × 2n real ‘symplectic’ matrix; δ ∈ R2n.

Definition #2: UG =
∏N

ℓ=1 e
−iHℓ , where Hℓ is of degree at most 2:

Hℓ =
∑
j

(ajxj + bjpk) +
∑
j,k

(Ajkxjxk + Bjkpjpk + Cjkxjpk) .

Fact: these two definitions are equivalent.
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Distance between
oscillators

≫ oscillation
amplitude

=⇒ Taylor expand HG = −
∑

i<j
Gmimj

∥r⃗i−r⃗j∥ up to 2th order w.r.t. displacement

of masses from equilibrium position.

=⇒ e−iHG t/ℏ ≈ Gaussian unitary UG.

Problem

Estimate the upper bound on Fcℓ(E,U) in Theorem 1 for

E =Eλ Gaussian coherent state ensemble;

U = UG Gaussian unitary.
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Main result

Theorem 2

Gaussian i.i.d. ensemble Eλ, λ > 0. Gaussian unitary UG s.t.
U†

G r UG = Sr + δ. Then

Fcℓ (Eλ, UG) ≤ f (λ,S) ..= min
J⊆[n]

2n(1 + λ)n∏2n
ℓ=1

√
2 + λ+ |zℓ(λ, S , J)|

,

where zℓ(λ, S , J) is the ℓ
th eigenvalue of the Hermitian matrix

(1 + λ)S⊺iΩJS − iΩJ ,

ΩJ
..=

⊕
j∈J

(
0 1
−1 0

)
⊕

⊕
j′∈Jc

(
0 −1
1 0

)
.

S orthogonal symplectic

⇒ sends coherent states to coherent states
⇒ UG never entangles states in Eλ.

Nevertheless, Fcℓ(Eλ,UG) < 1! Processes mapping product states to
product states can be very far from LOCC (e.g. swap).
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Recap & example

Simplest example:
two oscillators on a line.

Protocol

1 Initialise oscillators in |α⟩ ⊗ |β⟩, with α, β ∈ C drawn i.i.d. from
Gaussian ensemble pλ(α).

2 Let the system evolve for time t. Compute symplectic S(t)
associated with UG(t) ≈ e−iHG t/ℏ.

3 Compute |Ψ′
α,β⟩ ..= UG (t)(|α⟩ ⊗ |β⟩). Measure with POVM

{Ψ′
α,β , 1−Ψ′

α,β}.
4 If outcome ‘Ψ′

α,β ’ is obtained with frequency > f (λ, S(t)), then the
process was not LOCC.

Several assumptions & approximations.
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How does the function f (λ, S(t)) look?

Periodic in t and increasing in λ.

f (0,S(t)) =
1

1 +
∣∣sin (Gmt

d3ω

)∣∣ .
Ideally, wait t0 s.t. Gmt0

d3ω = π
2 =⇒ f is at a minimum. In practice,

t0 ∼ 3 d...

Ludovico Lami Testing quantumness without entanglement 14 / 16



How does the function f (λ, S(t)) look?

Periodic in t and increasing in λ.

f (0,S(t)) =
1

1 +
∣∣sin (Gmt

d3ω

)∣∣ .
Ideally, wait t0 s.t. Gmt0

d3ω = π
2 =⇒ f is at a minimum. In practice,

t0 ∼ 3 d...

Ludovico Lami Testing quantumness without entanglement 14 / 16



How does the function f (λ, S(t)) look?

Periodic in t and increasing in λ.

f (0,S(t)) =
1

1 +
∣∣sin (Gmt

d3ω

)∣∣ .

Ideally, wait t0 s.t. Gmt0
d3ω = π

2 =⇒ f is at a minimum. In practice,
t0 ∼ 3 d...

Ludovico Lami Testing quantumness without entanglement 14 / 16



How does the function f (λ, S(t)) look?

Periodic in t and increasing in λ.

f (0,S(t)) =
1

1 +
∣∣sin (Gmt

d3ω

)∣∣ .
Ideally, wait t0 s.t. Gmt0

d3ω = π
2 =⇒ f is at a minimum. In practice,

t0 ∼ 3 d...

Ludovico Lami Testing quantumness without entanglement 14 / 16



What have we gained?

What does one need to build an experiment?

Our proposal:

Ability to prepare coherent
states with great precision

⇒ cool down macroscopic
oscillators close to ground state.

Very precise single-phonon
detectors, precise clocks, etc.

Entanglement-based proposals:

Ability to prepare large spatial
superpositions of macroscopic
objects.

Effective interferometers to
manipulate & measure such
superpositions.

Excellent control over noise — e.g. breeze blowing at ∼ 1 km (!)

Largest mass in superposition:4 heavy molecule m ∼ 4× 10−24 kg.

Largest oscillator cooled to a handful (∼ 11) of phonons?

5

LIGO’s suspended mirror, m ∼ 10 kg.

4Fein et al., Nat. Phys. 15:1242, 2019.
5Whittle et al., Science 372:1333, 2021.
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Conclusions & outlook

1 Problem: LOCC simulation of a unitary on an ensemble.

2 General bound on maximal fidelity of simulation.

3 Application to systems of oscillators←→ computation of Fcℓ(Eλ,UG)
for Gaussian coherent state ensemble and Gaussian unitary.
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