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Time-Translation Symmetry

A quantum state p € D(A) is time-translation invariant if
e—iHAtpAez'HAt — A VicR

A quantum channel N' € CPTP(A — B) is said to be time-translation covariant
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Time-Translation Symmetry

The Pinching Channel -
The pinching channel is defined with respect to an Hamiltonian H* = Z a5 112

PA—)A (,OA) — Z H?,OAnﬁ
r=1

gp=l

Properties:

1. The pinching channel is itself time-translation covariant.
2. The pinching channel is idempotent; i.e. P =P o P.
3. A density matrix p € ©(A) is time-translation invariant iff P(p) = p.

4. If N € CPTP(A — B) is time-translation covariant then

PB—>B ONA—>B _ NA—>B 5 PA—>A

5. The pinching channel can be expressed as a random unitary channel.



Quantification of Time-Translation Asymmetry

Let D(p|lo) := Tr|plog p] — Tr|plogo| and H(p) := —Tr|plog p|]. Then,
C(p) = in D = H(P — H
()= min Dipllo)=H(P(p)) ~H(p)
For any p € ®(A) the coherence of n copies of p satisfies

C (p®") < |A]log(n + 1) e 0 ) =
n—oo M

All States

Time-Translation
Invariant States




Manipulation of Time-Translation Asymmetry

Consider two Hamiltonians:

HA =N ay)a) (x4 HP = "bely)(y|”
r=1 y=1

Relatively non-degenerate Hamiltonians:

Uy — Ay =by,—by = x=212 and y=1y

Theorem: For relatively non-degenerate Hamiltonians

N e€COV(A— B) <= MNisclassical; i.e. N478 = pB=B o NA7E o pA—=A



Manipulation of Time-Translation Asymmetry

Consider the Hamiltonian H* = " a,|x)(x|*
z=1

Non-degenerate Bohr Spectrum: a, —a, = a,r —a,y <= z=2a andy=1y

or z=vyandz =¢
Theorem:

Let A be a physical system with Bohr energy spectrum, and let p,o € D(A).
Then, the following are equivalent:

1. There exists a N/ € COV(A — A) such that o = N (p).

ey = (T|ply) # 0

Sgy +— <'CU O-‘y>

2. The matrix @) = (¢sy), whose components are given by

T

1,?—‘"’3} itr=y

otherwise.

is positive semidefinite.




Manipulation of Time-Translation Asymmetry

Corollary:
Let 0 € ®(A) be an arbitrary state, and denote by p, := (x|o|x). Then,

) := ) v/Palz)

can be converted to o by a time-translation covariant channel.



Quantum Thermodynamics

Free States: The Gibbs States WA = 73

Properties:
1. Gibbs states cannot be used to extract work.
2. Gibbs states have minimal energy for a given entropy.

3. Gibbs states are the only completely passive states.




Thermal Operations

Heat Bath
Fixed Temperature T

System Interacts
Quantum System A with the Bath Quantum System A’

—7)

Exchange of Heat
and/or Particles



Thermal Operations

Three Basic Steps:

1. Thermal equilibrium. Any subsystem B, with Hamiltonian H”, can be
prepared in its thermal Gibbs state 7.
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Thermal Operations

Three Basic Steps:

1. Thermal equilibrium. Any subsystem B, with Hamiltonian H”, can be
prepared in its thermal Gibbs state 7.

2. Conservation of energy. Unitary operation on a composite physical system
that commutes with the total Hamiltonian can be implemented.

3. Discarding subsystems. It is possible to trace over any subsystem (with a
well defined Hamiltonian) of a composite system.

p Energy NAZ2(p?) = Tep [U7 (0% @ 47) U]
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Thermal Operations

Consider a Gibbs preserving unitary channel Y € CPTP(AB — A'B’)

1 JAB—A'B’ (v ®+P) = A @ 4P (with |A'B’| = |AB|)

Lemma: The quantum channel below 1s a thermal operation.

0 neray NA—A (p*) = Trp {Z/{AB—MX’B’ (0" ® 73)}

Preserving

Evolution




Closed Thermal Operations

TO(A — A’) denotes the set of all thermal operations in CPTP(A — A').
Lemma: The pinching channel P €eTO(A — A).

Two undesirable properties:
1. The set TO(A — A’) is not closed in CPTP(A — A).

2. The set TO(A — A’) is not convex.
The closure of the set TO(A — A'):

CTO(A — A') := {/\/ € CPTP(A— A') : N = lim Ny , Ni € TO(A — A’)}

Theorem: The set CTO(A — A’) is closed and convex.



G1bbs Preserving Covariant Operations

Every thermal operation N' € CPTP(A — A’) has two key properties:
1. NA=4" is Gibbs preserving operation (GPO); that it, NA7A (v4) = 44",

2. NA=A4" ig time-translation covariant; i.e. N € COV(A — A').

CTO(A — A')

GPC(A — A')
GPO(A — A")
CPTP(A — A')




Quantification of Quantum Athermality

The Relative Entropy of a Resource:

D (plv) = —H(p) — Tr [plog~]
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D (pllv) = —H(p) — Tr [plog]
= —H(p) — Tr [P(p) log ]




Quantification of Quantum Athermality

The Relative Entropy of a Resource:

(pHv) —H(p) — Tr[plog~|
—H(p) — Tr [P(p) log 7]
=D (P(p)||v) + H(P(p)) — H(p)



Quantification of Quantum Athermality

The Relative Entropy of a Resource:




Quantification of Quantum Athermality

The Relative Entropy of a Resource:

Nonuniformity Quantum

Coherence



Deterministic Manipulation of Quantum Athermality

Suppose P(p) = P(o)

GPC,

(ps77) > (0,7)
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The Quasi-Classical Case

(A A)CT()(B B><:>(A A)GPO(B B)

D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and T. Beth, International Journal of Theoretical Physics 39, 2717 (2000)

Relative Majorization:

GPO
(p*,g?) — (d”,g”) <= o’ =FEp"* and g’ =Eg?

—= (p*,g?) = (d”,g")



The Church of the Trivialized Hamiltonian

For a trivial Hamiltonian H? = 0 the Gibbs states is uniform:

(1)
Ay 1|1
g :um::E : m = |A]
\1/
Theorem:
If g = (%, . kTm)T has rational components, then for any probability

vector p = (p1,...,Pm)"

CTO m
(pv g) = (I‘, u(k)) where r := @pxu<kw)

r=1



The Golden Unit of Athermality

(10)(0[*, u”)
/ N\

Pure State Maximally Mixed State.
Theorem:———(|0) (0], u™) <= (|0)(0, uy;,)
Al =m X| =2
X,_i x  m-1 X
= —[0)(0]7 + 1)1~

s

Xin Wang & Mark Wilde, Phys. Rev. Research 1, 033170 (2019)



Distillation

d(pA — O'B) = min % ||O’B —N(pA)

N€ECTO(A—B) H 1

ditAar o

Gibbs State

All States

- - ~——

Distill'(1)=log sup m :d (1A,"A)y1 "JoHo< X $ #
O<m ' R

= Dl P(Y

Hypothesis Testing Divergence: D). (11"):= min ) | Tr["V] - Tr[V]" 1# #
or !t



Distillation

e e | ) . H | P
Distill ' (!)=log sup m :d (14,"*) 1 |0#* ,ul ¢ #

O<m 'R
=Dmn P() "
Asymptotically:
- . . i R
Distill( ') = lim limsup =Distill* %"
' 0% niv n
. 1 | 7"
= lim limsup =D;,, P(1#M)#"
' 0 niv n
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Gibbs State
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Cost (1) = log _in mod oo, uXTE (1A A $#

<m ! R

= Dpax (1) (Under Gibbs Preserving Operations)
/ = 1 (Under GPC or CTO or TO)

Xin Wang & Mark Wilde, Phys. Rev. Research 1, 033170 (2019)



Sublinear Athermality Resources (SLAR)

DePnition: A sublinear athermality resource (SLAR) Is a sequence of quantul
athermality systems {R,}n n, such that:

1. |Rn| = Poly( n)
| |
2. There existsc> 0and 0! ! < 1suchthat' HR"! 1 ¢cn' foralln" N.

(100, ur,) bR (1t

L |

(10"0f, uy ) # !'Re "R 486 # N mt )



Asymptotic Cost

(10"0f, uy ) #HEAEE"R (1t i

|

(00, um) # ! Rn "Ro 48 (# "'
Theorem: |If ! Is a pure state then

Cost(!) := lim

m— "
lim —=D(")



Future Work

State with zero non-uniformity and the most coherence for a given Gibbs state:

|m | m

It 1= O« |x! and = Oy | X 1#X]

x=1 X=1

Interconversions with two types of resources:

R TTo o TRV A
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Coherence/Asymmetry Nonuniformity
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