Quantum Coherence and Unitary Work Extraction

Felix Binder

TRINITY
COLLEGE
DUBLIN
based on PRL 125, 180603 (2020) with
G. Francica, M. Mitchison, G. Guarnieri, J. Goold, F. Plastina

Quantum Resources Workshop

7 December 2022, Singapore

- A broad question: What is quantum in Quantum Thermodynamics?
- A more specific question: How much work can be extracted from a quantum state ρ (with respect to a Hamiltonian H)?

> Alice presents Bob with a quantum state.
> How much work can Bob extract?

Thomson's 2nd law

"No work can be extracted from a closed equilibrium system during a cyclic variation of a parameter by an external source"
[Allahverdyan \& Nieuwenhuizen, Physica A 305, 542 (2002)]

Rules of the game

Cyclicity:

$$
\tilde{H}(t)=H+V(t)
$$

with $V(t)=0$ for $t<0$ or $t>\tau$
Unitarity:

$$
\langle W\rangle=\operatorname{tr}\left[\rho H_{0}\right]-\operatorname{tr}\left[\rho^{\prime} H_{0}\right]
$$

Ergotropy

is the maximum work extractable under cyclic, unitary evolution.

$$
\begin{aligned}
\rho & =\sum r_{n}\left|r_{n}\right\rangle\left\langle r_{n}\right|, \text { with } r_{n} \geq r_{n+1} \forall n \\
H & =\sum \epsilon_{n}\left|\epsilon_{n}\right\rangle\left\langle\epsilon_{n}\right|, \text { with } \epsilon_{n} \leq \epsilon_{n+1} \forall n
\end{aligned}
$$

Ergotropy \& passive states

$$
\begin{aligned}
\mathcal{E}(\rho) & =\operatorname{tr}\left[H\left(\rho-P_{\rho}\right)\right] \\
P_{\rho} & \left.=\min _{U} U \rho U^{\dagger}=\sum r_{n}\left|\epsilon_{n}\right\rangle\left\langle\epsilon_{n}\right| \quad \text { e.g. } r_{n} \propto \exp \left[-\beta \epsilon_{n}\right]\right)
\end{aligned}
$$

$\lim _{n \rightarrow \infty} \rho^{\otimes n}: \mathcal{E} \rightarrow F_{\text {n.e. }}:=D\left(\rho \| \rho_{\beta^{*}}\right)$
[Pusz \& Woronowicz, Comm. Math. Phys. 58, 273 (1978); Lenard, J. Stat. Phys. 19, 575 (1978)]

Simplistic illustration for a qubit

Ergotropy quantifies work extraction from population inversion and coherence.

$$
H=-\sigma_{z}
$$

Coherence: resource-theoretic description

Quantum resource theory of coherence (in a nutshell)

- fixed basis $\{|j\rangle\}$
here: $|j\rangle=\left|\epsilon_{j}\right\rangle$
- free states: $\phi=\sum_{j} p_{j}|j\rangle\langle j|$
no off-diagonals in given basis
- free operations (SIO*): $K_{n}=\sum_{m} e^{i \varphi_{m}}\left|\pi_{m}\right\rangle\langle m|$ unitaries: $U=\sum_{m} e^{i \varphi_{m}}\left|\pi_{m}\right\rangle\langle m|$ with π invertible \Rightarrow permutations and phases \Rightarrow no creation of coherence
- monotone: $C(\rho)=\min _{\phi} D(\rho \| \phi)=S(\Delta[\rho])-S(\rho)$ $C(\rho)$ measures coherence and cannot increase under SIOs
[Winter \& Yang, PRL 116, 120404 (2016); Yadin et al., PRX 6, 041028 (2016)]

Coherent ergotropy

Coherent ergotropy

Coherent ergotropy

Coherent ergotropy

$$
\beta \mathcal{E}_{c}=C(\rho)+D\left(P_{\delta} \| \rho_{\beta}\right)-D\left(P_{\rho} \| \rho_{\beta}\right)
$$

Coherent ergotropy: bounds

$$
C(\rho)-D\left(P_{\rho} \| \rho_{\beta}\right) \leq \beta \mathcal{E}_{c}(\rho) \leq C(\rho)+D\left(P_{\delta} \| \rho_{\beta}\right)
$$

Upper bound

Saturated for $\beta^{*}=\beta$ if $\rho=U \rho_{\beta^{*}} U^{\dagger}$, e.g.:

- qubits
- Gaussian states

$$
\begin{gathered}
\rho=D(\alpha) \rho_{\beta} D^{\dagger}(\alpha), \text { with } \\
D(\alpha)=e^{\alpha a-\alpha^{*} a^{\dagger}}
\end{gathered}
$$

Summary and ergotropy in context

Summary

- ergotropy: coherent and incoherent part
- coherent ergotropy: entropic expression

Perspective

- work in quantum thermo: task-dependent
[Niedenzu et al., Quantum 3, 195 (2019)]
- coherence and ergotropy in NESS
- quantum engines: characterisation of load
[von Lindenfels et al., PRL 123, 080602 (2019), Horne et al., npj:QI 6, 37 (2020)]

PRL 125, 180603 (2020) [arXiv:2006.05424]

with G. Francica, M. Mitchison, G. Guarnieri, J. Goold, F. Plastina

Thank you for your attention!

- Work extraction from unknown sources: arXiv:2209.11076
- PhD position available
- MSc in Quantum Science \& Technology: tcd.ie/physics/quantumtech/

Quantum Info @Trinity College Dublin

Alessandro Candeloro (joining in '23)

(joining in '23)

funding

= Bundesministerium
Bildung, Wissenschaft
und Forschung
IRISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirinn

FOUNDATIONAL QUESTIONS INSTITUTE
J TEMN \quad JEMPLETON
e-mail:
quantum@
felix-binder.net

