

Resource Theories and Noise Reduction

<u>Graeme Berk</u>, Simon Milz, Felix Pollock, and Kavan Modi 5th of December 2022

- 1. Noise Reduction as a Resource Transformation
- 2. Multitime Processes as Resources
- 3. Resource Theories for Noise Reduction
- 4. Numerical Results
- 5. Bounding Noise Reduction

Noise Reduction as a Resource Transformation

Golden rule for quantum resource theories: free transformations cannot increase resource value.

Noise Reduction as Resource Distillation

Contracting tensors:
$$\rho_{\mathsf{out}}^s := \llbracket \mathbf{T}_{\hat{n}} | \mathbf{A}_{\hat{n}} \rrbracket$$
, $\hat{n} = \{t_1, \dots, t_n\}$

New Kind of Dynamical Resource Theory

- Resource Objects: Process Tensors
- Resource Transformations: ???

Superprocesses

G. D. Berk, A. J. P. Garner, B. Yadin, K. Modi, and F. A.Pollock, Quantum (2021).

Superprocesses

G. D. Berk, A. J. P. Garner, B. Yadin, K. Modi, and F. A.Pollock, Quantum (2021).

Superprocesses

G. D. Berk, A. J. P. Garner, B. Yadin, K. Modi, and F. A.Pollock, Quantum (2021).

Action of Superprocess: $\mathbf{T}'_{\hat{n}} := [\![\mathbf{T}_{\hat{n}} | \mathbf{Z}_{\hat{n}}]$

Resource Distillation in Time

Resource Distillation in Time

We can concentrate resources amongst temporal subsystems!

Second type of resource transformation

Action of Coarse–Graining: $\mathbf{T}_{\hat{m}} := \llbracket \mathbf{T}_{\hat{n}} | \mathbf{I}_{\hat{n} \setminus \hat{m}} , \ \hat{m} \subseteq \hat{n}$

Potential Resources: Arbitrary process tensors $T_{\hat{n}}$.

Free Transformations: $\mathbf{Z}_{\hat{n}}|\mathbf{I}_{\hat{n}\setminus\hat{m}}]$ consist of superprocesses and/or temporal coarse-graining.

Constraints: free superprocesses are temporally local sequences of quantum operations

$$\mathbf{Z}_{\hat{n}} = \mathcal{W}_t \otimes \left(\bigotimes_{i=1}^n \mathcal{W}_{t_i} \otimes \mathcal{V}_{t_i}
ight) \otimes \mathcal{V}_0.$$

Total mutual information *I* is a monotone.

$$I(\mathbf{T}_{\hat{n}}) = S\left(\mathbf{T}_{\hat{n}} \| \mathbf{T}_{\hat{n}}^{\mathsf{marg}}\right) \text{ with } \mathbf{T}^{\mathsf{marg}} := \bigotimes_{k=1}^{2(n+1)} \mathsf{tr}_{\bar{k}}\{\mathbf{T}_{\hat{n}}\},$$

I can be split into two parts: $I(\mathbf{T}_{\hat{n}}) = M(\mathbf{T}_{\hat{n}}) + N(\mathbf{T}_{\hat{n}}).$

IQI is non-convex, but its monotones require no optimisation to compute.

Multitimescale Optimal Dynamical Decoupling (MODD) tailors DD sequences to be applied at every available timescale.

Conversion of Non-Markovianity

Preservation of Information at the Channel-Level

Preservation of Information at the Channel-Level

Convex RT: Entanglement Breaking Quantum Instruments

Free superprocesses of IQI:

$$\mathbf{Z}_{\hat{n}} = \mathcal{W}_t \otimes \left(igotimes_{i=1}^n \mathcal{W}_{t_i} \otimes \mathcal{V}_{t_i}
ight) \otimes \mathcal{V}_0$$

Convex combinations of trace non-increasing combs:

$$\mathbf{Z}_{\hat{n}} = \sum_{k} p_k \mathcal{W}_{t_k} \otimes \left(igotimes_{i=1}^n \mathcal{W}_{t_{i_k}} \otimes \mathcal{V}_{t_{i_k}}
ight) \otimes \mathcal{V}_{0_k}$$

Entanglement in time is the resource in EBQI.

Define another theory ARNG_{EBQI} using free superprocesses that are asymptotically resource non-generating w.r.t. the free processes of EBQI.

Bound on noise reduction:

$$r(\mathbf{T}_{\hat{n}} \to \mathbf{T}'_{\hat{n}}) \leq rac{S^{\infty}_{\mathsf{R}^{\mathsf{F}}}(\mathbf{T}_{\hat{n}})}{S^{\infty}_{\mathsf{R}^{\mathsf{F}}}(\mathbf{T}'_{\hat{n}})},$$

Issues with tightness because permutations of temporally separated subsystems are disallowed.

- 1. Noise Reduction as a Resource Transformation
- 2. Multitime Processes as Resources
- 3. Resource Theories for Noise Reduction
- 4. Numerical Results
- 5. Bounding Noise Reduction