METROLOGICAL RESOURCES BRACED FOR THE WORST

Gerardo Adesso

University of Nottingham

QUANTUM METROLOGY

to improve the available precision

in measuring physical parameters

(CONVEX) QUANTUM RESOURCES

The set \mathcal{F} of free states is

Convex

(mixing and forgetting does not create any resource)

⊷ Closed

(the limit of a sequence of free states is a free state)

RESOURCE THEORY OF COHERENCE

Free states

- Incoherent states: States diagonal in a chosen reference basis $\{|j\rangle\}: \delta \in \mathcal{F}: \delta = \sum_j p_j |j\rangle\langle j|$, or equivalently $\delta = \Delta(\delta)$ with $\Delta(\rho) = \sum_j |j\rangle\langle j|\rho|j\rangle\langle j|$
- E.g. for one qubit, with respect to the computational basis, the states $|0\rangle$ and $|1\rangle$ and their mixtures $p |0\rangle\langle 0| + (1 p)|1\rangle\langle 1|$ are incoherent (free); conversely, any equatorial state, i.e. $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$, is a maximally coherent state.

Free operations

 Operations O unable to create coherence, that map incoherent states into incoherent states (e.g. MIO, DIO, IO, SIO, ...)

ROBUSTNESS OF A RESOURCE

$$R_{\mathcal{F}}(\rho) = \min_{\tau} \left\{ s \ge 0 \mid \frac{\rho + s \tau}{1 + s} =: \sigma \in \mathcal{F} \right\}$$

Convex optimisation

- •• minimise $Tr[\rho X] 1$
- •• subject to •• $X \ge 0$ •• $\operatorname{Tr}[\sigma X] \le 1 \ \forall \ \sigma \in \mathcal{F}$

SUBCHANNEL DISCRIMINATION

Goal of the game: maximise the probability of success

 $p_{succ}(\rho, \{\Psi_k\}, \{M_k\}) = \sum_k \operatorname{Tr}[M_k \Psi_k(\rho)]$

• Notice: this includes channel discrimination (with $\Psi_k = p_k \Lambda_k$)

 $U_k = \mathrm{e}^{-i\phi_k G}$

PRL 116, 150502 (2016)

PHYSICAL REVIEW LETTERS

Ş

Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence

Carmine Napoli,^{1,2} Thomas R. Bromley,² Marco Cianciaruso,^{1,2} Marco Piani,³ Nathaniel Johnston,⁴ and Gerardo Adesso²

PHYSICAL REVIEW LETTERS 122, 140402 (2019)

Editors' Suggestion

Operational Advantage of Quantum Resources in Subchannel Discrimination

Ryuji Takagi,^{1,*} Bartosz Regula,^{2,3,4,†} Kaifeng Bu,^{5,6,‡} Zi-Wen Liu,^{7,1,§} and Gerardo Adesso^{2,||}

In any convex resource theory, for every ρ

 $\max_{\{\Psi_k\},\{M_k\}} \frac{p_{succ}(\rho,\{\Psi_k\},\{M_k\})}{\max_{\sigma \in \mathcal{F}} p_{succ}(\sigma,\{\Psi_k\},\{M_k\})} = 1 + R_{\mathcal{F}}(\rho)$

PARAMETER ESTIMATION

• Quantum Cramér-Rao bound: the estimation error satisfies $\Delta \theta^2 \ge (\nu H)^{-1}$, where *H* is the **quantum Fisher information** • Define metrological advantage: $N_Q(\rho) = Q(\rho) - \max_{\sigma \in \mathcal{F}} Q(\sigma)$

PARAMETER ESTIMATION

 $\{M\}$

PHYSICAL REVIEW X 10, 041012 (2020)

Entanglement between Identical Particles Is a Useful and Consistent Resource

Benjamin Morris[®],^{1,*,†} Benjamin Yadin[®],^{1,2,*,‡} Matteo Fadel[®],^{3,4} Tilman Zibold[®],³ Philipp Treutlein,³ and Gerardo Adesso[®],^{1,§}

PHYSICAL REVIEW LETTERS 127, 200402 (2021)

Fisher Information Universally Identifies Quantum Resources

Kok Chuan Tan[®], Varun Narasimhachar[®], and Bartosz Regula[®] School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Republic of Singapore

> **Theorem 1.** There exists a parameter estimation problem with quantum channel Φ_{θ} and measurement *M* that satisfies $N_C(\rho|M) > 0$ and $N_O(\rho) > 0$ if and only if $\rho \notin \mathcal{F}$.

 Λ_{θ}

 $N_Q(\rho) = Q(\rho) - \max_{\sigma \in \mathcal{F}} Q(\sigma)$

Quantum resources

from mathematical foundations to operational characterisation

Singapore December 2022

Singapore December 2022 Euerybody is a genius. But if you a judge a fish by its ability to climb a tree, it will liue its whole Ife belieuing it is stupid

NON CONVEX RESOURCES

Free states:
$$\mathcal{F} = \bigcup_{j} \mathcal{F}_{j}$$

EXAMPLES

 Quantum coherence in multiple reference bases (versatile sensors) Thermodynamics with thermal baths at different temperatures (resource engines)

SUBCHANNEL DISCRIMINATION

• The advantage w.r.t non-convex set $\mathcal{F} = \bigcup_{j} \mathcal{F}_{j}$ amounts to robustness w.r.t. the convex hull of \mathcal{F}

$$\max_{\{\Psi_k\},\{M_k\}} \frac{p_{succ}(\rho,\{\Psi_k\},\{M_k\})}{\max_{\sigma\in\mathcal{F}} p_{succ}(\sigma,\{\Psi_k\},\{M_k\})} = 1 + R_{\operatorname{conv}(\mathcal{F})}(\rho)$$

WORST CASE DISCRIMINATION

• The minimax advantage w.r.t. each subset \mathcal{F}_j amounts to robustness w.r.t. the set $\mathcal{F} = \bigcup_j \mathcal{F}_j$

$$\inf_{j \in \mathcal{F}_{j}} \max_{\{\Psi_{k}\},\{M_{k}\}} \frac{p_{succ}(\rho,\{\Psi_{k}\},\{M_{k}\})}{\max_{\sigma \in \mathcal{F}_{j}} p_{succ}(\sigma,\{\Psi_{k}\},\{M_{k}\})} = 1 + \inf_{j} R_{\mathcal{F}_{j}}(\rho) = 1 + R_{\mathcal{F}}(\rho)$$

BLIND PHASE ESTIMATION

- Only the spectrum of the generator *G* known a priori
- -> Eigenbasis (non-degenerate) revealed after preparation
- •• Worst-case scenario: minimum quantum Fisher Info Q

INTERFEROMETRIC POWER

 $\bullet \circ$ Worst-case scenario: minimum quantum Fisher Info Q

•• $P(\rho_{AB}) = \frac{1}{4} \inf_{G_A} Q(\rho_{AB}; G_A)$ for a bipartite probe ρ_{AB}

INTERFEROMETRIC POWER

• A measure of quantum discordant correlations

•• $P(\rho_{AB}) = 0$ if and only if $\rho_{AB} = \sum_i p_i |i\rangle \langle i|_A \otimes \tau_{iB}$

Quantum Discord Determines the Interferometric Power of Quantum States

Davide Girolami,^{1,2,8} Alexandre M. Souza,³ Vittorio Giovannetti,⁴ Tommaso Tufarelli,⁵ Jefferson G. Filgueiras,⁶ Roberto S. Sarthour,³ Diogo O. Soares-Pinto,⁷ Ivan S. Oliveira,³ and Gerardo Adesso^{1,*}

WHAT ABOUT THE AVERAGE?

•• $\langle Q(\rho_{AB}; G_A) \rangle_{\mathcal{U}(G_A)} = 0$ if and only if $\rho_{AB} = \frac{\mathbb{I}_A}{d_A} \otimes \tau_B$

• Either local purity or correlations would be resources

Average for subchannel discrimination? •• OPEN PROBLEM

SUMMARY

Convex resource theories

•• Every resource is useful for discrimination or estimation

Non-convex theories

 Worst case discrimination advantage = robustness
Worst case estimation = interferometric power (local coherence = discord)

OUTLOOK

-- Hybrid resource theories

 Worst case for hybrid state/measurements

Examples and applications

- Quantum thermodynamics
- Magic state distillation
- Experimentally restricted settings and operations
- Average figures of merit

THANK YOU